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Abstract 

For both the electronics manufacturer and consumer, reliability is an essential 

characteristic defining the quality of the electronic component and system. Gradual 

degradation of the electronic components decreases efficiency of the system, and lack of 

reliability can lead to a significant loss. Efforts at achieving better quality and reliability 

of electronic components involve the inspection of solder joints in area array packaging. 

It is of note that solder interconnections are the vulnerable parts of circuit board 

assemblies (CBA), because they are mainly subjected to various assembly process during 

electronic manufacturing as well as environmental exposure failures during service. 

Therefore, the reliability of solder joints is a major concern during the entire life of an 

area array packaging in order to minimize the electronic failure rate that may lead to large 

losses.  

This thesis aims to provide a solution that helps to overcome some of the challenges that 

can occur during the reliability inspection of solder joints in area array packaging. Firstly, 

by successfully developing a non-destructive monitoring methodology to study the 

performance of solder joints under thermal cycling test. The quality of the solder joints 

in this research work from growth to failure was monitored by using a type of ultrasonic 

inspection called acoustic micro imaging (AMI).  Results indicate that provided a suitable 

AMI parameters is applied, one can generate a 3D reconstruction of the solder joints 

images to allow and assess the solder joints’ behaviour in flip chip packages. AMI 

inspection of solder joints show good agreement with the results obtained that was used 

to examine how the reliability was affected by the geometry and position of the joints.  

An automatic segmentation technique was developed that allow to characterize and 

extract distinctive features of solder joints on different area array packages; such features 

include mean intensity, structural similarities model and histogram intensity of the region 

of interest of solder joints. The validation experimental results have been statistically 

implemented using novel geometrical and time domain features extraction methods like 

area, form factor and standard deviation. The result from these methods were used to 

extrapolate the solder joint’s fatigue life at normal operating conditions. Moreover, the 

analysis of variance (ANOVA) was employed to determine the percentage contribution 

of solder joints parameters on the acquired images. The results indicated that the 

thickness of the printed circuit board can affect solder joint reliability. 
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 Introduction 

Reliability of solder joints in area array packaging is one of the paramount qualities in 

characteristics of electronic systems. Generally, in today’s technological world, almost 

everyone depends upon several electronic systems, for example our electric appliances, 

mobile phones, smart watches, computer systems, in banking industries, in aerospace 

industries and in the health care sector. Technology innovation has resulted in today’s 

customer expecting those various electronic gadgets or systems to provide adequately 

designed functions when requested along with greater reliability. As you most likely have 

encountered, sometimes those electronic systems do experience certain failures that make 

them unable to function and deliver the desired quality as expected during usage. 

Unexpected failures occurring in those electronic systems always has a negative impact 

on the system reliability which can lead to excessive downtime and large losses such as 

high maintenance cost and loss of revenue. Nevertheless, the variety of materials in an 

area array packaging has led to the development of complex systems and increasingly 

retains a high level of reliability. It is clear that the reliability of solder joints is a major 

concern during the mission life of an electronic product, because they are the critical link 

in circuit board assembly. Hence, it is paramount to determine the factors that affect the 

solder joint reliability in area array packaging. 

 This chapter describes the definition of area array packaging and its necessity in 

electronic devices, the background of the research and some motivational key points on 

the performance of solder joints under thermal cycling test in area array packaging are 

described. In order to improve the reliability evaluation of solder joints, the study aim 

and objectives are set to facilitate better non-destructive techniques to monitor the 

reliability of solder joints in an area array packaging. Contributions to knowledge and 

novelty are presented. The content of each chapter in this thesis is outlined while a 

complete framework is proposed. 
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  Background Knowledge of Area array packaging 

The term area array packaging (AAP) describes the process of housing and 

interconnection of integrated circuits to form an electronic system. The packaging 

techniques can be classified in two different types’ which are the through-hole 

technology and surface mount technology. In field electronic packaging, the precision 

and quantity of the different types of packages as shown in Figure 1-1 since the 1970’s 

can be portrayed as a through-hole technology. For example, the dual in package (DIP) 

and quad flat packages (QFP). In which during the assembly process, the input/output 

(I/O) connections of the package or component leads are inserted through holes in the 

printed circuit boards and then transferred to the soldering machine for finishing process. 

Although, this type of technology provides strong mechanical bonds to the package and 

are more dependable, the restriction of the technology is that it only make use of the 

sides of the components of the board, leaving a substantial amount on the back side of 

the printed circuit board unutilized. In order to address the size constraints in through-

hole technology, packages with solder joints were developed in the late 1980s. This new 

mounting technology was called surface mount technology. This technology have the 

advantages to provide high functional package density on the printed circuit board.  

Increasing transistor-gate counts based on the technology has constantly driven the 

growth and production of smaller packages with ever more input and output (I/O) 

connections. These I/O demands have driven peripherally leaded surface-mounted 

components to smaller lead to lead pitches (Milton et al., 2013). As a result of the added 

complexity, circuit board assembly yields and costs have been adversely affected. To 

address these problems a ball grid array package (BGA) was designed. The BGA 

package is a type of package that makes use of solder joints to connect the substrate to 

the PCB instead of pins, to have more convenient AAP for integrated circuits and large 

interconnects on the packages (Aryan et al., 2018). The continuous advancement on flip-

chip technology has led the BGA and chip scale package (CSP)  packages to develop 

into Flip Chip On board (FCOB) packages as shown in Figure 1-2(b), where the solder 

joints served as the first level interconnects, with the silicon die flipped over and 

mounted directly on the printed circuit board using soldering technologies. 

 



3 

 

 

 

                                           Figure 1-1: Types of packaging 

 

 

 

 

Figure 1-2: Illustrates (a) Flip chip without underfill material and   (b) Flip chip 

with underfill  

 

The commercial use of surface mount technologies is motivated by various positive 

factors, like increasing the demands and supply of smaller die and packaging, increasing 

the heat dissipation and reliable interconnects. These factors have made the packages 

one of the most widely known growing technologies over the past few years (Wolter et 

al., 2007).    

The area array packaging techniques provides the following advantages: (i) The AAP 

greatly increases interconnection density, and this is probably the most important driving 

force that has made it a widely known package today. (ii) The AAP are designed for high 

heat dissipation, in other words they  are good in thermal management (iii) AAP are built 

(a) 

(b) 

Solder Ball 

Solder Ball 

Underfill 

Substrate 

Substrate 

Die 
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in solder source thus removing the need to apply paste for wiring board (iv) They could 

accommodate more than one chip. It is noted that area array electronics packages have 

been increasing in the interconnect density, and the substrate size, the increase in density 

will result in scaling down in package size (Vardaman, 2004, Harvey et al., 2007).   

According to (Vardaman, 2004), it was cited that the packaging techniques of flip chip 

on AAP is becoming more complex in geometry and material properties with 50% 

annual growth in solder bumps while reducing the package size. The ever reducing 

package size results in smaller interconnect size (solder bumps) and unsurprisingly 

results in allied reliability issues experienced at the interconnect boundaries.  

During usage, the solder joints on the manufactured flip chip packages are exposed to 

various environmental conditions, such as temperature, thermal shock, humidity and 

vibration, which contribute to their mechanical, chemical and electrical failures. 

According to Steinberg, (2000), reliability was defined as the probability that a system 

will perform it intended function at a specific period of time, when operated under a 

specific conditions. It was found out that 55% of the failures of electronic products 

related to their operating thermal environment during usage as shown in Figure 1-3, 

vibration is responsible for 20% of the failures, 5% of duct and another 20% were related 

to humidity. 

 

                                

Figure 1-3: Failures of electronic products related to their operating environment 

   The reliability of solder joints is considered as the main concern for AAP since they 

are the vulnerable link in terms of circuit board assemblies’ (CBA) reliability. This is 
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due in part to the coefficient of thermal expansion mismatch in materials used in the 

construction of components found on CBA, when exposed to thermal cyclic 

environmental conditions that in turn causes severe reliability issues and decreases the 

life cycle of the area array packaging dramatically. Additionally, many of these packages 

are constructed and required to operate in harsh environments for example in automotive 

and aerospace industries. Thus, the rate of change, exposure time and thermal excursion 

limits are dependent upon product application and usage known as ‘Mission Life’. 

 In other words, the reliability of solder joints is a topic that has generated much interest 

over the last century and cannot be overlooked in the development of new area array 

packaging due to its varied application. It is very important to know that the vast amount 

of manufacturing engineering efforts goes into evaluating the reliability of solder joints, 

and trying to identify the fundamental causes of their failure during usage. The reliability 

of solder joints has become a major issue to be address because solder joints do not only 

provide excellent electrical connection, but they mechanically affix the component to 

the PCB that provides conduits for heat dissipation into the circuit board and help match 

expansion differences between PCB and components.  

It is important to know that the reliability of solder joints has become a major issue of 

concern to electronic manufacturers because the package can also generate heat by itself 

as the current flows through it, also by an external environment to which it is exposed. 

For example, on an engine-mounted electronics control unit (ECU) in a vehicle that 

provides certain information on the dashboard, i.e. the speed, engine revolutions and fuel 

level, because of the different thermal properties of the materials involved during usage. 

The variations in temperature generated in the system cause coefficient thermal 

expansion mismatch between the substrate and the chip. Kulshreshtha and Chauhan, 

(2009) reported that due to this mismatch, distortion between the substrate and silicon 

die at extreme environmental operation will occur. Pang et al., (2001), also stated that 

the solder joints will begin to distort and cause creep to happen inside them when 

subjected to temperature loading. The creep distortion actuated by the temperature 

variations causes initiation and propagation of cracks in the solder joints. The level of 

propagation of cracks impairs the electrical functionality of the solder joints in the 

package. However, based on the need to observe and obtain solder joints’ reliability data 

to better understand the failure rate and life characteristics, a novel approach presented 
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in this work, helps to assess the reliability of solder joints an AAP is able to withstand, 

by placing the CBA under thermal cycling test. The accelerated cycling test is used to 

generate rapid ageing of the flip chips’ components on the printed circuit board, so that 

the effects of ageing or solder joint fatigue can be studied in a shorter period of time.  

  Motivation 

As the components became much smaller, there is an absolute need to understand the 

critical reliability challenges of those area array packages. Over the past years, area array 

packages have become the most commonly used package for both design and 

manufacturing of electronic systems. The area array packages have become the package 

of choice to the electronic manufacturers because of their advantages such as the increase 

in capability and functionality of the circuit board assemblies. Apart from these, 

electronic manufacturers need to exceed customer design expectation by designing more 

reliable products with a very good performance before those electronic products go to 

the market. Nevertheless, in area array packages, such as ball grid arrays (BGA), solder 

joints interconnections are often the weakest link in terms of product reliability, which 

alone can provide coefficient thermal expansion (CTE) mismatch when subjected to 

environmental exposure. The CTE mismatch that occurs between the circuit board 

assembly and the packages, has a significant effect on solder joint reliability. 

In order to reduce the solder joints failure rate and the time spent in performing reliability 

testing of solder joints in those components, the goal of this research project was to 

develop a new methodology for solder joints’ reliability inspection in area array 

packaging based on an ultrasonic inspection technique called acoustic micro imaging 

(AMI). This technique has been used along with the accelerated thermal cycling (ATC) 

test to inspect the performance of solder joints under flip chips due to their great 

capability to detect anomalies within materials and interconnections. 

Due to the limitation in life monitoring of solder joints, the research methodology will 

aid the design of solder joints through life validation tests, in which tests results from a 

reliability standard point in this project, can be used to create proper monitoring tests 

capable of generating adequate solder joints failure data that could occur during the 

desired service level.  
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 Aims and Objectives 

In order to obtain accurate and meaningful information on life distributions, reliability 

and failure rate of solder joints in area array packaging, it is critical to choose a proper 

failure criterion and use the appropriate measurement technique to monitor the failure 

events in the test. The aim and objectives for this research project are described briefly 

in the following sections. 

 

  Aims   

The main aim of this research study was to estimate and monitor the failure rates of the 

reliability of solder joints under thermal cycling test using a non-destructive technique 

(NDT) called acoustic micro imaging (AMI).  

 

 Objectives          

In order to achieve the overall aim of this research study, the following goals and 

objectives were set: 

 To validation test solder joints in area array packaging using ATC which will 

enable an assessment and reliability analysis for electronic products.  

 To establish a protocol for non-destructive inspection using techniques like 

Acoustic Micro Imaging and X-ray in order to ensure inspection of solder joints 

at set intervals, while maintaining the integrity of the package for further test 

cycles. 

 To investigate the use of image processing techniques with the goal of extracting 

the features that represent the integrity of solder joints in the AMI images. 

 To determine the reliability of the solder joints under validation test through 

evaluation using geometrical and time-domain feature extraction methods to 

estimate the fracture area, form factor and the standard deviation of the joints. 
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 Novelty of this Thesis. 

Despite the fact that a number of studies considering the subject of the reliability of 

solder joints exist in the literature, extensions of the concepts of through life monitoring 

of electronics is still rare. If one can assess the extent of the degradation from an expected 

normal operating condition for electronics then the data can be used to meet several 

goals, such as minimizing unscheduled maintenance, extending maintenance cycles, 

advance warning of failure and, reduction of life cycle cost of equipment by decreasing 

inspection and inventory costs. 

A new thermal profile of -40ºC to +85ºC was designed in this performance study by 

balancing the test time and the number of data points requested for monitoring the crack 

initiation and crack propagation. This thermal profile developed led to a slower failure 

process, which enabled finer tracking of crack propagation in solder joints as depicted 

in chapter 6 of this thesis. The profile also facilitated the development of an image feature 

based joint fatigue degradation model for through life monitoring of crack propagation 

and prognosis of electronic devices. 

An automated ultrasonic inspection and monitoring system of the solder joints on the 

flip chips was designed in this performance study that solved some existing issues in 

capturing the fatigue failures rate of solder joints under environmental exposure. This 

kind of techniques have been used along with the accelerated thermal cycling (ATC) test 

to inspect the reliability of solder joints due to their strong capability to detect 

discontinuities within materials. 

The research presented in this thesis achieved the following tasks: 

 Show how temperature affects the properties of large area array package solder 

joints’ fatigue life. It is very important to examine and determine why the 

thinner board of 0.8mm is failing before the thicker board of 1.6mm when the 

contrary should have happened according to (Darveaux et al., 1998; Syed et 

al., 1999, Primavera, 1999; Lau et al., 2002; Vandevelde, 2004; Birzer et al, 

2006; Ahmad et al., 2009; deVries, 2009). This research tries to find the trend 

of change of behavior for flip chips components on boards during the thermal 

cycling test, i.e., to see if a particular thickness with one kind of board is better 

or worse. It was found out that  the fourteen flip chips on non-under filled 
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1.6mm hot air solder level (HASL) board has a prolonged life cycle compared 

to 0.8mm HASL substrate thickness board during the through life monitoring 

test. 

 As the reliability for each flip chips component on different printed circuit 

board thickness is calculated for a specific time based on component age, this 

thesis aims to study the reliability of solder joints under thermal cycling test 

on those flip chips and validate the results against the appropriate simulation 

global model. Once validated, it also aims to design a robust image 

segmentation process that was implemented on the extraction solder joints 

images to understand the effect of various solder joints geometry and thermal 

parameters on solder joints reliability on area array packaging, and use such a 

study to develop the histogram difference, structural similarities difference and 

the intensity level that represent the performance of the solder joints under 

thermal cycling test. 

 The research presented in this thesis proposed a new non-destructive 

methodology that can be used to acquire both 3D and 2D acoustic scans data 

during validation test. In the proposed method, ultrasound images were 

collected at different sets of intervals to verify the fatigue degradation and 

failure rate of solder joints occurring at the bump to silicon interface. These 

test results are extremely useful in investigating crack nucleation and 

propagation.  Likewise, in the segmentation approach, the region of interest as 

shown in Figure 5-10 in the acquired solder joints during the environmental 

test is correctly detected from the background. 

 In this research, analyses of the extraction results using geometrical feature 

extraction like area, form factor has demonstrated better stability in measuring 

the solder joints’ defects in the acquired AMI images. Further analyses on 

those solder joints was done using analysis of variance (ANOVA) techniques 

that demonstrate how the PCB thickness affects the failure rate of solder joints.  

 The research also determines and evaluates the variations in regions of interest 

in solder shapes under thermal cycling test using the form factor methods. 

Thus, the results depicted that if the region of interest shape is convex apex it 
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could lead to a big significant crack area, but a proportionally smaller crack 

area could occur when is it in concave apex form.  

 

  Thesis Outline 

This thesis is a broad study of the performance of solder joints under thermal cycling 

test, consisting of seven chapters and some appendices. The contents of each chapter are 

as follows: 
 

Chapter 1: Introduction and background – This deals with the background and 

inclusion of reliability of solder joints in area array packaging. It discusses the 

reliability prediction of solder joints of electronic components in previous research. 

The aims and objectives, contributions to knowledge of this research are also 

outlined.  

Chapter 2: Literature Review - goes over different backgrounds and previous work 

done that are needed for this performance study, including thermal cycling 

inspection on electronic packaging and non-destructive inspection. 

 

Chapter 3: Methodology that includes ATC testing and measurement – This 

provides insight into the thermal cycling experimental rationale, the various test 

samples, facilities, and design of experiments. 

 

Chapter 4:  ATC through life monitoring tests –  This is a more important section, 

as it investigates the role of thermal cycling test on solder joints in PCB’s,  by 

performing  a real life monitoring test on those solder joints that was based upon a 

low thermal profile. This method gives an adequate procedure for finding out 

reliability or time to failure of solder joints. ATC parameters associated with the 

testing will be focused on.  

Chapter 5: AMI analysis of solder joints – This demonstrates how to ultrasonically 

examine the evolution and failure path analysis in solder joints. This approach has 
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been implemented to analyse and monitor the failure rate and reliability of solder 

joints under thermal cycling test. Using the application of industrial acoustic 

imaging systems available in Liverpool John Moores University (LJMU) ultrasonic 

laboratory, AMI images were taken throughout the validation tests for further 

processing. Inspection analysis using the AMI methods are also demonstrated. 

 

Chapter 6: Crack evolution on different solder joints on the test samples – This 

study provides details about the results of the experimental study of crack growth in 

solder joints for different numbers of thermal cycles using AMI techniques on the 

PCBs. It presents the results of crack initiation using Matlab tools for solder joints 

under different post-process conditions like geometrical method (GM) feature 

extraction. This also provides detailed experimental investigation of crack 

propagation in solder joints, located under AMI techniques. 

Chapter 7: Analysis of variance was used to determine the significant factors which 

affect the solder joints characteristic life under temperature cycling ranges. 

 
 

Chapter 8: Conclusions and recommendation for future work – This provides 

summary/observations from the experiment and analytical studies, notes the 

contribution to knowledge and proposes future work and recommendations. 
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 Literature Review 

In order to understand solder joint reliability on area array packages under thermal 

cycling, then some background material is necessary. The background material covered 

in this chapter includes the fundamentals of area array packages; accelerated temperature-

cycling tests on solder joints and non-destructive inspection techniques. Thus, only the 

successful integration of these various methods can lead to the successful development 

of solder joints’ reliability inspection methodology that meets the overall research goal.   

It is of note that area array packages (AAP) have gained popularity in major electronics 

applications due to their proven thermo-mechanical reliability and standard assembly 

techniques.  In the processes of microelectronics manufacturing, electronic packaging 

provides electrical connection thermal and mechanical functions to semiconductor chips. 

Nevertheless, AAPs consist of solder joints that have proven to be valuable as a 

mechanical and electrical interconnect material in the electronics manufacturing 

industries due to their low melting point, wetting behaviour, electrical properties, and 

availability. However, solder joints on the packages have also proven to be very sensitive 

since they are the weak link  in circuit board assemblies which exhibit such phenomena 

as age and cycle softening, grain-growth hardening, strain-rate hardening,( Wen et al., 

1997). Despite many decades of characterizing solder joints’ defects in AAPs, there are 

still some challenges in monitoring how the cracks in solder joints initiate and propagate.  

A very elementary view of solder joints’ reliability was reviewed in this chapter, 

primarily to enable one to understand how to choose the right methodology to use when 

conducting a reliability test on solder joints on area array packaging. 

  Reliability issues in Area array packages 

What is reliability of an electronic system from your own perspective? Take for example, 

switching on your mobile phone, would you consider your mobile phone to be perfectly 

reliable if it did not switch on immediately? Would you consider your mobile phone 

reliable if it takes more than two times to switch on? Based on your answer to the 

questions, it becomes more complex and hard to define and determine the reliability of 

the electronic system. Moreover, the reliability of the electronic components is 

increasingly becoming a paramount issue for electronics manufacturing engineers, as 
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mostly our everyday schedule and activities are more dependent on the functionality of 

those systems.  

Although, it is of note that the reliability of electronic systems has generated much 

interest over the last century due to its varied applications and failure rates. The US 

Department of Defense (DOD) developed the reliability assessment of electronic system 

and circuit board assemblies to estimate the need for maintenance and logistics in the 

1960’s using prediction tables and software, documented in MIL-HDBK-217 (Pecht, 

2001). It is common knowledge in literature that the developed method predict the 

expected useful life of electronic boards, incorporating certain components by using 

databases of electronic equipment failures.  

Thus far, this class of traditional reliability approaches, known as the handbook method 

(MIL-HDBK-217), was recommended by (Pecht, 2003) to be abandoned after reviewing 

the development record and drawbacks in the technology of methods used for reliability 

assessment. A manual, IEEE 1413.1, ‘IEEE Guide for selecting and using reliability 

prediction based on IEEE 1413’, gives data on appraisal of the normal strategies for 

dependability expectation for a given application (IEEE standard 1413.1, 2002). It has 

been demonstrated that the Mil-HDBK-217 and the related handbook techniques, are not 

reliable. However, Pecht, (2003) developed the approach of design for reliability in the 

institution of Centre for Advanced Life Cycle Engineering (CALCE). 

The reliability predictions, which were generated via the handbook, were based on basic 

heuristics, contrary to engineering design methods and the physics of failure (POF). 

However, the components in the handbook are out dated, which makes the job of keeping 

it updated very expensive. Due to this limitation, the reliability prediction is categorized 

into three classes of alternative method; these can broadly be classified as Physics of 

failure (POF), field data and test data from reliability test. The goal is to improve the 

understanding behind the reliability of electronic system which will enable designers, 

design more efficient products.  

Firstly, a POF method technique uses the knowledge of mechanisms and processes to 

predict the reliability of a product analytically without having to resort to using the 

handbook method (Hendrick et al., 2015). This kind of approach dominates the reliability 

modelling, (Adithya Thaduri, 2013).  POF actually models the root causes of failure such 
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as fatigue, fracture, wear and corrosion from the design phase to field data operation. 

(Hillman, 2002).  This process has usually been done by gathering the information from 

the acceleration test and the statistical distributions (Perry, 1999 and ASM, 2004). The 

goal is to enable electronic reliability designers to gain more understanding on the 

reliability assessment of the product. Thus, the information and understanding derived 

from the use conditions and specific duration of thermal exposure helps the electronic 

design and manufacturers to make a remarkable note about the mission life of the 

products. 

One of the key limitations of POF is that the algorithm is difficult to model and typically 

assumes a ‘perfect design’, (McPherson, 2010). In other words, the design engineers 

involved in the modelling should be able to understand and identify the system 

architecture and the effect of the validation test on the system. For example conducting 

an adequate study on the PCB material properties is critical step, in comprehending how 

the stiffness or the thickness of the PCB influences other parameters involved in the 

design. Thus, inadequate understanding could lead to the POF prediction being limited 

to end of life behavior.  

Secondly, the field data method is important to the reliability engineering program. This 

type of design is required to improve the quality and implementation of the traditional 

reliability procedure used to describe the failure mechanisms, failure modes and failure 

sites in the MIL-handbook 217. The benefits of the field data method over the handbook 

method are significant, i.e. the data can be evaluated over the design before making a 

prototype, which will surely help to compare the existing reliability requirements with 

the current product in market (Adithya Thaduri, 2013).  Thus, the kind of information 

received from the field data gives a specific measure of the expected product 

performance.  The fundamental approach of this test data technique is necessary to assess 

and to be able to understand the reliability procedures expected from a product for 

environmental protection. For example, when the data from the similar field experiments 

are required, predictive equations for reliability study of the same product can be 

achieved.   

Thirdly, the reliability testing of electronic products of components on the AAP in the 

early stage is important, to identify the mission life of the components, as it produces the 



15 

 

 

most significant information and data on the products. In order to assess the reliability 

of an electronic product, several approaches are involved. By going through the review 

of the work published by (White, 2008; (McLeish, 2010), it was suggested that this was 

a period in which the field data, test data and POF method were all competing to replace 

the traditional handbook methods as previously mentioned. it is important to know that 

each method has its merits and demerits, and if applied appropriately provides valuable 

results. Considering this, the IEEE (Institute of Electrical and Electronic Engineers) 

recently released a standard.  (Jais, 2013) emphasized the reason for examining the three 

classes of alternative methods is that records of the failure occurrence, causes and 

prevention can be reviewed more precisely. 

Reliability plays an important role in electronics manufacturing industries, due to the 

continuous reduction in package size. In packaging, modern electronic products are 

getting more flexible, composite, and thinner with higher interconnect density and speed, 

which must endure various stresses during their usage. These factors make it more 

difficult to design and develop a predictive solder joints’ reliability process. Likewise, 

Floor plan layout, assembling and component quality all greatly influence the general 

reliability quality of a product.  

Subsequently, precise analysis and reliability prediction of solder joints in area array 

packaging under thermal cycling test are considered tedious, due to a number of factors 

that could affect the solder joints’ performance. Some of the factors are: (i) Mechanical 

stresses that cause delamination, fracture on the solder joints during usage, unintended 

stress from the intermetallic compounds , (ii) over constraint of the PCB’s, and (iii) the 

soldering defects resulting in fracture, creep, diffusion voiding. 

It is of note that one of the most common failures associated with solder joints is 

unexpected harsh environmental exposure during usage. Generally, temperature is the 

major causes of failure of solder joints in an electronic product. This particular failure 

occurs by inducing thermal stress in the solder joints, under normal operating conditions. 

This is because the solder joint is a eutectic alloy not an isomorphous solution 

(Kanchanomai et al., 2002). A eutectic alloy is formed between metals of very different 

parameters such as Sn-Pb, The failure that occurs in solder joint with a eutectic alloy 

during the validation test is mainly due to the high CTE (coefficient of thermal 



16 

 

 

expansion) mismatch deformation between the silicon die and organic substrate during 

environmental operation that leads to fatigue failures.  As the temperature increases or 

decreases, materials having different CTE will shrink or expand, which result in stress 

in the interconnections. The creep strain distribution within the solder joints will vary 

depending on the relaxation of the joints. Both spatial and thermal gradients, coupled 

with the CTE mismatch generate the thermally induced strain and stress on those joints 

which is considered as the dominant failure mode in solder joints’ interconnection. 

Thus, one of the ways to assess the reliability of solder joints in AAP is by using 

accelerated cycling test (ATC).  An accelerated cycling test is used to obtain information 

quickly on the desired usage level, failure rate and reliabilities of a product. For example, 

the design life of a car is typically 15 years. Therefore, it is unrealistic to expect 8,000 

hours or 5000 to 1000 thermal cycles over 15 years. If a thermal cycle depending on the 

thermal profile in the field is 2 hours on average, then we are looking at 10000 to 20000 

hours of testing. This is too long to be compared with design life cycles and hence we 

have to accelerate the testing. By using ATC, the prediction of solder joints’ reliability 

must consider the aging effect on the component’s life. 

It is often found that in major electronics products, Eutectic tin lead solder (63%Sn, 

37%Pb) has been used for area array packaging for more than 30 years because of its 

low melting temperature, excellent copper wetting and high heat dissipation, 

(Kanchanomai et.al., 2002).  During the useful life of the solder joints on the packages, 

its reliability is a function of various stresses like thermal, mechanical and electrical 

stresses over time. (Edwards, 2012). Those stress applied to solder joints through thermal 

cyclic test fatigue were considered in the literature to result in the most dominant failure 

mechanisms. Several authors in literature have utilized ATC tests to approach subject 

matters, for example, Lodge and Peddar, (1990) conducted ATC tests to analyze the 

reliability of zirconium-titanium-stannate (ZTS) dielectric flip chip assemblies. Seyyedi 

,(1993) also illustrated the use of ATC to study the thermal fatigue behaviour of low 

melting point solder joints. Ghaffarian, (2000) reviewed the reliability of BGA and CSP 

assemblies by making use of several thermal profiles. 

Meanwhile, in other publications reviewed, authors have taken an experimental 

approach to address the subject matter in order to study the reliability of electronic 

systems. Schubert  et al., (2002) conducted a test in which the mechanical and physical 



17 

 

 

properties, the tensile stress / strain rate, and the microstructure appearance of two lead 

free solder alloys, Sn96.5Ag3.5 and Sn95.5Ag3.8Cu0.7 was studied using ATC tests 

(Schubert et al.,  2002). Bhate observed that 'in essence this is fatigue crack growth 

problem' (Bhate, et al., 2007) and it is frequently studied empirically. Likewise, (Han, 

2005) explains that an increase in thermal stresses of an electronic circuit board increases 

the failure rate and decreases the reliability through electrochemical degradation 

processes. High temperature can also cause melting of the solder joints of the flip chips 

on PCBs and can slow progressive impairment of the performance levels due to 

degradation effects (Turek, 2012).  

Thus, the fatigue behaviour of solder joints has been studied under the premise of plastic 

deformation that involves the physical phenomenon of grain boundary separation 

following the grain coarsening because of thermo-mechanical stresses. Previous research 

carried out by Park et al., (2007) on a study of ATC on various BGA designs, utilized a 

Digital Image Correlation framework (DIC), they were able to observe the anisotropic 

orientation of the few grains in the joints, and observed the effect of the intermetallic 

compounds in the solder joints. This enabled them to observe how this could lead to 

plastic deformation along the grains boundaries close to the compounds that could 

initiate the crack in the solder joints. 

The work done by Sun et al., (2015), stresses the need to improve the understanding as 

stated in literature; he conducted a test to investigate the influence of temperature on 

PCB responses. A set of combined tests of temperature was designed to evaluate solder 

interconnect reliability at 25 °C, 65 °C and 105 °C. Results indicate that temperature 

significantly affects PCB responses. More work could be done in this area by considering 

a softer thermal profile, in order to investigate how the crack gradually tends to initiate 

and propagate in a harsh environment and more in the bulk solder. Upadhyayula et al., 

(2001), conducted a thermal cyclic study and accounted for the process of combined 

effects of thermal and mechanical stresses. Thermal cyclic creep was also addressed in 

the above-mentioned work extensively. The creep that occurs during the test is 

essentially a thermal stress induced phenomenon that is associated with the homologous 

temperature of the solder joints’ material properties. The “Viscoplastic” nature of solder 

joint conditions due to high homologous temperature was considered for analysis in the 
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above research work. This works suggests that the nature of deformations considered in 

the above study is predominantly in the plastic domain.  

It is of note that the solder joints fatigue failures that occur in the flip chips assemblies 

are often reported at the chip-to-bump interface and not likely to occur at bump-to-

substrate interface as shown in Figure 2-1, Frear et al., (2001 and Pang et al., (2001), 

reported that during the thermal cycling tests, the chip-to bump interface has the highest 

plastic strain concentration because of the distribution of stresses over each thermal 

cycle. 

 

 

 

 

 

 

      Figure 2-1: Pictorial representation of flip chip interconnection (Braden, 2012) 

Randoll et al., (2014) conducted a study on the thermal behaviour and isolation 

properties of Flame Retardant FR4, which is a grade designation, assigned to glass-

reinforced epoxy laminate sheets, tubes, rods and printed circuit boards (PCB). Test 

materials were investigated for application in embedded power systems. Its goal is to 

minimize and evaluate different PCB materials. The temperature dependent thermal 

conductivity of each material was measured to show the thermal behaviour and isolation 

properties of FR4 materials. 

 

Furthermore, Wan et al., (2015) explains that thermal-mechanical fatigue is one of the 

main failure modes for electronic systems, particularly for high-density, electronic 

systems with high-power components. Moreover, he cited that solder joints are often the 

cause of failure in electronic devices. Baik, (2008) illustrated the challenges encountered 

in the estimation of electronic reliability based on warranty data and recommended a 

technique for estimating PCB’s component reliability using an accelerated life test 

model. Kariya et al. (2004) also observed that the delamination or failure commonly 

The image originally presented in Figure 2-1 cannot be made freely available via 

LJMU E-Theses Collection because of 'copyright'.  The image was sourced at 

Braden, D.R., 2012. Non-destructive evaluation of solder joint reliability 

(Doctoral dissertation, Liverpool John Moores University). 
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started in the corner solder joints, global location depended on whole sample geometry 

and solder joints’ geometry influenced strain within the joint. It is often assumed that an 

interconnection on the outermost row of a BGA on a PCB will see most accumulated 

strain and is the site of failure initiation (Lee et al., 2014). 

Malik et al., (2011) explains more about the useful time of electronic products in his 

paper; he cites that the lifetime of solder joints could decrease significantly because of 

the large thermal stresses that occur at the chip to bump interfaces. In other publications 

also reviewed, authors also used a numerical approach towards predicting the reliability 

of PCBs. In a paper documented by Fan Yang et al., (2013), a numerical approach was 

used, to develop a new and computationally efficient multi-level approach to investigate 

board level drop reliability of a printed circuit board (PCB) assembly. Their approach 

was composed of two levels of finite element (FE) simulations: solder joint level and 

board level. Initially, static simulations of the solder joint level were used to obtain the 

homogenized property of the solder-under fill interconnection; explicit FE simulations 

of the board assembly followed this. Although he stated that some work needs to be 

reviewed on this part, by locating critical areas of the entire board, this could be achieved 

by investigating the interconnection stress on the PCB. 

 

Ameer et al., (2015) explain the criteria and methodologies of a simulation tool that 

predicts the reliability and remaining lifetime of circuit boards, where the criteria of 

determining the position of the failed components on the board layout and their effect on 

the entire test sample was demonstrated. Pan (1994) used an energy-based model to 

compile strain energy density for eutectic SnPb solder. The model considered the crack 

initiation in the joints and growth by removing elements from his finite element method 

when they reached the threshold strain energy density value. Logsdon et al., (1990) 

explored Sn-Pb material parameters, such as stress intensity factor and strain energy 

release rate, and Fatigue Crack Growth Rate (FCGR) under isothermal fatigue tests. A 

survey by Jacob, (2015) in his recent tutorial paper, describes an approach towards how 

to improve root-cause finding of electronic component failures by means of a system-

related failure anamnesis approach. While traditional failure analysis tries to analyse on 

the device level, this system-related method starts by providing a failure anamnesis on a 

system level, systematically continuing downwards via subsystems, wiring, and printed 
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circuit boards (PCBs) towards the device level in an opposite approach to that of subject 

(device)-related failure analysis. 

In electronics product the integrity of solder joints on packages is very paramount and 

also remains the backbone for ensuring that the products perform the intended function. 

It is stated clearly that product reliability is related to it through life performance during 

mission life. In other words, the most common and feasible way to assess the operating 

life time of the product is by extrapolating the accelerated test results using an 

Acceleration Factor (AF). This could be refer to as the analytical modelling method. 

Accelerated factor is expressed as the ratio of cycles to failure in the field (Nf_field) to 

cycles to failure in the test (Nf _test). There are several methods to calculate and analyse 

the acceleration factors, the most common and also used as a basis of other models is the 

refer to as Coffin-Manson (Masson, 1996) depicted in Equation 2-1.  

                                            𝐴𝐹𝑐𝑚 =  
𝑁𝑓_𝑢𝑠𝑒

𝑁𝑓_ 𝑡𝑒𝑠𝑡
= (

∆𝑇𝑡𝑒𝑠𝑡

∆𝑇 𝑢𝑠𝑒)
)𝑛                    Eq. 2-1 

 

Where AF is the Acceleration Factor, ΔT test is the Test temperature difference (°C), ΔT 

use is the Use temperature difference (°C), n = Fatigue or Coffin-Manson exponent. 

This is used explains the crack propagation phenomenon since it addresses only the 

plastic behaviour and therefore this type of method but does not adequately involve the 

through life monitoring process on the crack initiation phase in solder joints in which the 

significant contributor could be thermo-mechanical stresses that could over time initiate 

a crack.  For example, assuming the test boards which are going to be used for this 

experiment undergo 5 daily temperature transitions from 20 °C to 60 °C (ΔT use = 40 °C), 

while they are normally being used, the following acceleration will occur if the product 

is thermal cycle tested using a high temperature of 80°C and a low temperature of -20 

°C (ΔT test = 100°C), assuming a typical Coffin-Manson exponent (m) of 2. The work 

has been calculated by using equation 2-1. 

AF = (100 / 40)2 =6.25 

Testing this electronic product for 500 temperature cycles using the accelerated 

conditions would therefore be equal to about 2 years of life based on the stated use 

conditions. 

(6.25 x 500 cycles) / ((5 cycles per day) (365 days per year)) = 1.71 or 2 years  
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The downside to the numerical approach as illustrated by Riduot and Bailey (2007) is 

that the mechanistic effects such as crack initiation and propagation are ignored.  

Another limitation of fatigue model is that they don’t adequately captured 

microstructural effects.  As has been mentioned repeatedly in this literature review in 

chapter 2, corresponding to this, the solder joints’ thermal fatigue testing that occurs 

during thermal cycling is a process that needs to continuously improve. However, 

accordingly  Yang, (2012) illustrated in his thesis that  reliability of a solder joint in a 

product is the probability of a product to hold its quality with the movement of time, in 

other words, the reliability is used as a measure of the system success in providing its 

function properly during its design life. Thus, reliability still remains a major concern 

during the lifetime of a product and is subject to continual improvements. Nevertheless, 

previous studies on reliability have shown that no electronic product has an interminable 

operational lifetime. Keeping in mind the end goal to plan a product design and show 

operation without failure, expected product lifetime must be determined.  The critical 

reliability challenges of solder joints in AAP is considered as a paramount point in this 

research work because they play a major part in product reliability. Moreover, a broad 

variety of factors could affect the joints’ reliability, which can also contribute negatively 

to the lifetime performance. However, conducting a reliability test on those solder joints 

using a through life thermal cycling test can reduce a lot of early problem and failure 

they could encounter during their operational lifecycle. ATC is achieved by subjecting 

the components on the test vehicle to test conditions such that failures occur sooner. So 

that the prediction of the reliability of the product can be made within a shorter period 

of time.  By considering these merits, a quantitative ATC test was performed in this 

research in Delphi Automotive Industry. Thus, two different test samples of 0.8mm and 

1.6mm thick circuit board assemblies with the proposed thermal profile of -40ºC to 

+85ºC to quantify the reliability of solder joints were used, to accurately project 

(extrapolate) what the cumulative distribution function (CDF) at use will be. Obviously, 

the lower the stress the longer the time needed for the failures to occur in those packages. 

 In respect to the aim, it is imperative to conduct and evaluate the reliability study of 

solder joints on AAP, also to construct the life performance of solder joints’ fatigue 

models. A wide variety of solder joints’ delamination and defects exist that can 

negatively affect reliability. The need to perform a non-destructive evaluation (NDE) 
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and validation test on solder joints is critical before AAPs reach the production stage, to 

ensure that manufacturing quality metrics have been achieved.  

Table 2-1 depicted six solder joints fatigue models, which are summarized and arranged 

by class. 

Table 2-1: Summary of solder joints fatigue models (Lee et al, 2000 and Fan et al., 

2006) 

 

All of the fatigue models depicted in table 2-1 require some form of crucial information 

related to the specific geometry of the joints. It is important to know that most of the 

fatigue models produce different prediction results as certain assumptions are made in 

every different model. In order to apply those models as stated by Lee et al. (2000) 

baseline low cycle fatigue testing is paramount to acquire the values of the fatigue model 

constants. This baseline acquired data could be refer to as geometry specific to the region 

of interest of the solder joint. Hence, early fatigue model of the solder joints could fail 

to capture the ATC conditions like the ramp rate, dwell time, thermal range and strain 

amplitude because the model assumes the parameters to be empirical. Thus the practical 

uses in solder joint modelling is limited, because the thermal profile and the parameter’s 

used in the validation test is consistent through the test. 
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 Review of Solder Joints Non-Destructive Inspection Techniques. 

The attachment of flip chips on area array packaging has been carried out over the past 

decade by solder joint technologies (Braden, 2012). The inspection of solder joints on 

those packages using  non-destructive inspection techniques has played a noteworthy 

part in the improvement of better process and analysis control in the performance study 

of those solder joints in AAP manufacturing industries. This kind of technique has aided 

the internal and external inspection of those solder joints during various environmental 

tests. Traditionally, the inspection of solder joints has been performed manually as 

shown in the flow chart in Figure 2-2, for example using electrical testing as illustrated 

in a paper by Madhav et al., (1996). This method cannot be used to identify the exact 

defect on the solder joints during inspection. 

 

Figure 2-2: Flow chart showing traditional testing of area array packaging 

 

Currently, the available and the most common non-destructive inspection techniques are 

X-ray inspection, Laser inspection, visual inspection and ultrasound inspection.  These 

types of techniques are used to analyse the reliability and solder joints’ failure rate on 

those components on AAP. For example, for companies deploying AAP in their 

products, in sensitive industries like automotive, aerospace and military, the cost of 

failure of those various component can be unsustainable in terms of product recall, which 

could actually lead to damage of the company’s brand.  

 

Likewise, according to some findings from research done by the Motor Industry 

Research Association, according to Square (2012), it was found that electrical problems 
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sum up to 70% of consumer complaints, which increased the warranty claims doing that 

period. Also from a previous study done by Square Trade, (2012), it was reported that 

7.5% of smart phones, 6.6% of high definition cameras, did not perform the required 

function due to failure from non-accidental malfunctions. Therefore, the non-destructive 

evaluation (NDE) inspection of solder joints under various field conditions has become 

an important process that must be undertaken in the manufacturing industries in order to 

prevent early failure of those joints and ensure the quality of the end products. 

 

During the performance study of solder joints, one of the prominent ways to ascertain 

the integrity and reliability of solder joints in those components is through non-

destructive reliability testing. Therefore, using an NDE method, to determine and assess 

through-life performance of solder joints during thermal cycling’s and to accurately 

measure product reliability, becomes a needed tool for products designers. It also gives 

engineers the opportunity to evaluate manufactured Circuit Board Assemblies (CBA) 

without physically cross-sectioning components, thereby preventing them from 

destructive impact. Thus far, several non-destructive techniques have been developed to 

investigate the defects present in solder joints in AAP, some of the techniques include 

X-ray microscopy (Moore, 2002), Visual inspection, Acoustic Inspection, and Laser 

ultrasound coupled to interferometry. 

The survey methods for non-destructive inspection techniques that can be applied in the 

solder joints are discussed in the following sections 2.2.1 to 2.2.4. 

 

  X-ray Inspection 

The X-ray inspection is a non-destructive evaluation (NDE) technique, developed for 

use in various imaging applications like AAP package and medical inspections (Yang, 

2012). Thus, the X-ray system consists of an X-ray source, an X-ray collector to receive 

the penetrated radiation, and a camera to convert the photons on the collector to a digital 

form and imaging interpretation software during the inspection (Gong, 2016). When the 

x-ray travels to a test sample, the material absorbs x-rays proportional to its atomic mass 

and density (Bernard, 2003). The images from those material being used shows different 

image pixels because of different absorption due to the short wavelength. X-rays have a 

wavelength in the range of 10 to 0.001 nanometers. This short wavelength allows them 
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to penetrate test samples’ materials. This type of technique is a contrast imaging 

technique that has a resolution about one to two microns, depending on the X-ray 

wavelength (Pacheco, 2011).  

However, there are three different types of X-ray inspection namely the laminography, 

the tomography and the radiography. Thus, Gong, (2016) stated that most 2D X-ray 

systems use radiography techniques and are considered the most cost effective systems 

that have been used for inspection for years in many industries for inspecting volumetric 

defects on the packages. However, it has difficulty in detecting cracks because of the 

positioning of the solder joints and the presence of interfering features such as the 

multilayer interconnects on the substrates (Pacheco, 2011). Nevertheless, X-ray 

tomography and laminography are considered as 3D X-ray techniques. Figure 2-3 shows 

the schematic operating principle of Xradia 520 versa 3D x-ray, which are able to 

overcome some challenges that occur using the traditional tomography since they rely 

on a single stage of geometric magnification.   

 

 

 

 

 

 

 

Figure 2-3:  Schematic operating principle of 3D X-ray ZEISS Xradia 520 Versa 

 

The inspection microscope in Figure 2-3 uses a combination of geometric and optical 

magnification to produce a high resolution image of the sample. With this, the system 

allows to study a wide range of sample and also produces resolution at a distance (RaaD) 

this enable to maintain a submicron resolution at large and flexible working distance. 

The technique achieve images with a spatial resolution of 0.7 µm and minimum 

achievable voxel of 70 nm. This type of technique have the ability to inspect solder joint 

defects that occur in area array packages , but the test samples like printed circuit boards 

with large dimensions need to be trimmed and  be rotated during the inspection due to 

the scan limit in the test chamber. As a results of the size limitation, x-ray inspection 

The image originally presented in Figure 2-3 cannot be made freely available via 

LJMU E-Theses Collection because of 'copyright'. The image was sourced at 

https://www.zeiss.com/content/dam/Microscopy/us/download/pdf/Products/xra

dia520versa/xradia-520-versa-product-information.pdf 

 

https://www.zeiss.com/content/dam/Microscopy/us/download/pdf/Products/xradia520versa/xradia-520-versa-product-information.pdf
https://www.zeiss.com/content/dam/Microscopy/us/download/pdf/Products/xradia520versa/xradia-520-versa-product-information.pdf
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techniques remain unsuitable because of the limitation in test samples’ size and it 

requires long time data acquisition and image reconstructions. 

 

  Visual Inspection 

This type of non-destructive inspection has played an important role in inspection of 

PCB in electronic manufacturing environment. These types of techniques are available 

in 2D and 3D systems; an example of 3D is laser triangulation techniques that provide 

faster data acquisition (Ryu et al., 1997). A 2D visual inspection system includes an 

illumination source to power up a device, a camera to record the acquired image and a 

processor to produce an output image. Thus far, Capson et al., (1988) conducted an 

experiment and introduced an illumination source, which uses two circular colour lamps 

and a camera to analyse the solder joint structure. The lamps are mounted so that their 

centre lies on the same axis. One lamps ring emit red light mounted at the lower angle 

and the other emits blue light mounted at the higher angle. As shown in Figure 2-4, the 

author further stored the acquired images using the RGB image capture board. The 

colour of the lamp is chosen to aid in the segmentation of the acquired solder joint images 

from the PCB itself which usually appears green (Zhang, 2006). The visual inspection  

as illustrated in Figure 2-4 can also be used to generate colour contours on the solder 

joint during the inspection in order to detect and analyse various defects like voids, 

delamination. However, the application of this type of inspection is limited to the 

peripheral column of the flip chip in the package as the light beam is affected by the 

outer rows of solder joints. 

 

 

 

 

 

Figure 2-4 Image of tiered-colour illumination solder joint inspection system with 

two light sources (Zhang, 2006) 

The image originally presented in Figure 2-4 cannot be made freely available via 

LJMU E-Theses Collection because of 'copyright'.  The image was sourced at 

Zhang, L., 2006. Development of microelectronics solder joint inspection system: 

Modal analysis, finite element modeling, and ultrasound signal processing 

(Doctoral dissertation, Georgia Institute of Technology). 
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  Ultrasound Inspection 

This important NDE inspection technique has been employed in medical applications, 

and for flaw detection in packages. This type of technique refers to sound waves at 

frequencies higher than the range of the human ear, for example a frequency higher than 

20 KHz. There are several forms of the technique but, as schematically shown in Figure 

2-3, they all rely on generating acoustic waves with a piezoelectric transducer and then 

propagate them into the test sample under inspection via a focal lens and coupling fluid 

medium (e.g., de-ionized water). The same piezoelectric transducer used for the 

inspection then records the reflected waves and converts them into electrical energy. 

Thus, both penetration and image resolution are determined by the operating transducer 

frequency. For example, at low frequencies a transducer of 20–50MHz enables coarse 

ultrasonic scans of images with low resolution, but greater penetration of imaging 

(several mm). At the other extreme a higher frequency transducer like 230MHz generate 

a better spatial resolution with a lower penetration of a few micrometers. Hence, the 

higher the frequency waves, the shorter the wavelength, the lower the frequency, the 

longer the wavelength. 

A basic principle of ultrasound imaging is illustrated in Figure 2-5(a), while Figure 2-

5(b) depicts an AMI system. In Figure 2-5(a) the piezo electronic transducer both sends 

and receives the reflected waves, which is also known as pulse echo mode. This 

technique is carried out by immersing the transducer lens in de-ionized water. The de- 

ionized water that serves as acoustic impedance is mainly used as a medium to transmit 

the ultrasound waves. There are different types of imaging modes used to provide 

different inspection techniques during acoustic imaging inspection; one is the pulse echo 

and the second one is the through transmission modes (Sonoscan).  However, the pulse 

echo mode could provide a better spatial resolution than the trough transmission mode, 

which make it more necessary in the inspection of area array packaging.  
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Figure 2-5 a) A basic Schematic diagram of Ultrasound imaging (Sonoscan) b) 

Image showing Gen6™ C-Mode Scanning Acoustic Microscope (Courtesy 

Liverpool John Moores University Imaging Lab) 

Furthermore, the AMI techniques in Figure 2-5(a) have been used in area array 

packaging inspection in detecting gap-type defects such as cracks, delamination, 

artefacts, and voids. In a number of literature reviews, scanning acoustic microscopy 

(SAM) has been shown to be very useful in studying failures of plastic packages. Thus 

far, Yang et al., (2012) stated that they used ultrasound-imaging techniques to study how 

joint position and constraints can influence the reliability performance of solder joints in 

area array components. Likewise, Braden, (2012) stresses the need for improved solder 

joint reliability, based on this technique. In his work, an ultrasonic technique was 

proposed for through life non-destructive evaluation, in which a key solder feature, 

nucleating at the bump to silicon interface, which was propagating along the laminar 

crack plane, was captured using Acoustic Micro Imaging (AMI). The measurement data 

was compared to Finite Element Analysis (FEA) studies in order to understand the 

differences in reliability prediction. Furthermore, it was found in this study that FEA 

simulations that take into account floor plan layout and constraint points (resulting from 

gluing or screwing CBA’s to a metal housing) showed a difference in predicted 

reliability outcome compared to traditional simulation methods. The work done was 

improved on by considering the shape and the size of the greyscale image of the region 

residing both at the centre and the outer image of the solder joint. Since the intensity 

values of every pixel contain some spatial information about the defect, the data obtained 

a 
b 
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can be included in the calculation to obtain the failure location more precisely and to 

track the crack in the joint.   

 

Semmens et al., (1997) presented an ultrasonic based process technique concerned at 

improving the application of the ultrasound method to the detection of crack depth. The 

results obtained have provided useful information about the severity of the damage. The 

depth was estimated with good reliability for some of the most evident cracks presented 

in the sample. The maximum depth was evaluated at approximately 20 mm in the 

package. Shirahata et al., (2014) also proposed a methodology that determines the 

difference between fatigue cracks by the ultrasonic non-destructive test. They came up 

with the tandem array ultrasonic testing method that could figure out an incomplete 

penetration; the transducer used for the tandem array could determine the reflected wave 

at the incomplete penetration and the bottom of the irregularity structure.  

 

Ganpatye et al., (2006) developed a detection matrix for the detection on the ultrasonic 

testing. Originally, the ultrasonic data were being taken over the specimen. Then the data 

were confirmed with the results obtained using the conventional methods like optical 

microscopy. Their results show excellent correlation between the comparisons. Using 

the ultrasonic back scattering technique, they have found the matrix cracks which are 

not optical images as in photography instead those are grey-scale representation. 

However, it is noteworthy to know that AMI techniques are widely used in inspecting 

the discontinuities on the components of area array materials. Thus, more information 

concerning how to use AMI technique to monitor the performance of solder joints under 

area array packaging is depicted in chapter 4 of this thesis    

 

  Laser ultrasound 

This type of inspection technique helps in examining the solder joints’ defects. One of 

the limitations of this kind of technique is that they do not provide more detailed 

information about each joint’s failure. This system makes use of a pulsed Nd: YAG 

(neodymium-doped yttrium aluminum garnet) laser to induce ultrasound in the flip chip 

packages in the thermoelastic region to prevent any damage to the packages (Liu et al., 

2001). It then measures the transient out-of-plane displacement response on the package 
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surfaces using a laser Doppler vibrometer. Liu et al., (2001) stated that the displacement 

response during the test reacts differently when there are abnormal solder joints lying 

under the measurement points. Erdahl et al., (2004), carried out a study and the 

developed laser  system has been successfully applied to detect solder joint defects 

including missing, misaligned, open, and cracked solder bumps in flip chips, land grid 

array (LGA) packages and multilayer ceramic capacitors (MLCCs). 

As previously mentioned, there are various non-destructive inspection technique used to 

evaluate the integrity of an electronic products but due to some limitations in properties of 

each NDT, the capability of inspecting and monitoring the performance of solder joints 

under thermal cycling test is discounted. For example, Optical inspection has the ability to 

detect surface cracks, but the indication of small failures are difficult to analyze. 2D x-ray 

techniques is unable to monitor defects in solder joints during thermal cycling tests, whereas 

3D X-ray techniques is unfavorable due to its long throughput time. Laser ultrasound might 

be a good techniques to inspect the performance of solder joints, but the detection is verified 

indirectly by analyzing the vibration responses which is error prone and relies on skillful and 

experienced operators (Yang, 2012). Some common non-destructive inspection techniques 

are reviewed in table 2.2. 

Table 2-2: Comparisons of commonly used non-destructive techniques 
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  Chapter Summary 

From the literature cited so far in chapter 2, there were many efforts deployed to 

investigate reliability problems of the solder joints in modern electronic circuit boards. 

Due to the difficulty in performing the life-monitoring experiments of those joints, most 

of the studies on solder joint reliability are computational modelling used for locating 

and characterizing defects. Likewise, it soon becomes apparent that existing non-

destructive evaluation and life monitoring of modern electronic circuit boards are limited 

in their application as stated in table 2-2 for use in electronics industries. In order to fill 

this knowledge gap, and meet better level of quality inspection of solder joints reliability, 

the performance of this work is concerned with investigating how to implement the use 

of ultrasonic imaging called Acoustic micro imaging. This type of techniques has 

demonstrated a strong ability to locate and characterize materials conditions and defects. 

AMI inspection will help to improve the resolution of solder joints’ images under 

thermal cycling test needed to get adequate failure data of solder joints in area array 

packaging, in order to be able to study the performance and reliability of those joints.  In 

addition, as a very helpful, convenient and versatile NDT, AMI inspection method has 

the following advantages; sensitivity to both surface and subsurface discontinuities in 

the test sample materials, can penetrate test samples for solder joints defects 

measurement, ability to access for pulse-echo technique, high accuracy in determining 

reflector position and estimating size of the scan sample, instantaneous scan results, 

detailed scan imaging with automated systems. A more detailed analysis concerning how 

to undertake the performance study of solder joints under thermal cycling test is depicted 

in the research methodology section that follows as chapter 3. 
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  Research Methodology 

To carry out a reliability research study on solder joints, it is important to choose a well-

defined methodology. This performance study concerns applied research with a purpose 

to apply a validation test and AMI inspection technique to find the time-to-failure of the 

solder joints on area array packaging (AAP). Based on the current knowledge gathered 

from an extensive literature study and academic consultations, this helps to achieve the 

impact of environmental exposure on the reliability of solder joints on AAP. Figure 3-1, 

shows a research flowchart methodology to study the performance of solder joints under 

thermal cycling test. The framework in this section also provides details of how to use 

non-destructive inspection tools to monitor the performance of solder joints during the 

validation test. 

 

Figure 3-1: A framework for Research Methodology 
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Likewise, in other to satisfy the research methodology in the proposed framework, the 

procedure followed for the research methodology tasks approach is detailed and appears 

in Table 3-1. 

 

  Research Set-up Table 

Table 3-1 : Table of Research Tasks 

 

  Research Methodology Strategies Steps 

This research work deals with the reliability of solder joints in AAP using a thermal 

cycling test as the validation test. Thus, experiments in this research work were conducted 

via the methodology illustrated using the flow chart as in Figure 3-1. 

 

Number  Task Name Task Descriptions Reasons for Task 

      1  Validation Test   Individual testing of the 

PCB  in the chamber   

To understand and test 

the ability of the solder 

joints under thermal 

cycling 

       2 Non-Destructive Testing Ultrasonically testing the 

whole fabricated PCB 

using AMI techniques  

To understand and to 

check the performance of 

the solder joints at 

different cycles. 

       3  Development of imaging 

processing techniques for 

through life monitoring of 

solder joints 

 To segment and extract 

the features that represent 

the integrity of solder 

joints in the ultrasound 

image. 

Novel feature extraction 

was applied to all AMI 

images captured during 

the thermal cycling tests. 

To track the initiation and 

propagation of cracks in 

the solder joints 
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 Test Boards Design 

In order to investigate the potential and feasibility of studying the through life 

performance of solder joints in AAP under thermal cycling, test boards were designed for 

this research work as shown in Figure 3-2. Two, thickness of printed circuit board 

typically used in industry were chosen. So test boards of 0.8mm and 1.6mm were 

designed with copper pads having a hot air solder levelling (HASL) finish before the flip 

chips are assembled on them. This industry standard HASL finish was used in this 

research study because of its excellent wetting during component soldering.  The use of 

two different thickness HASL test boards is critical to assessing the optimum 

performance of the solder joints on different board thickness under thermal cycling. 

The test boards designed for this experiment are multipurpose PCBs, with various AAP, 

different surface finish configurations and substrate thickness to enable validation 

experiments, which are suitable for accelerated cycling test (ATC) test in this study. In 

this study, FR-4 (Flame Retardant Class 4) PCBs were chosen as the testing board 

material. One set of the boards was populated with 14 flip chips with PCB thickness of 

1.6mm HASL, while the other test boards also has 14 flips chips with PCB thickness of 

0.8mm HASL. On each PCB 8 other area array ball grid array (BGA) chips not used in 

this study were attached. Each flip chip package contains 109 solder joints of 125μm 

height in two main rows positioned at the periphery of the package. The rectangular die 

were 3948um x 8898um in size having a thickness of 725um. The solder material used 

was Sn 52.9%, Pb 45.9% and Cu 1.2% with the bump diameter of 140μm. The flip chip 

packages were assembled without under fill between the substrate and chips in order to 

generate failures at a shorter period. Images of the test boards sample used for this 

research work can be found in Figure 3-2. In addition, Table 3-2 interpret the flip chips 

configurations on both 0.8mm and 1.6mm boards. Parts were placed on either side of the 

circuit board in two configurations as depicted in Figure 3-2 in order to study the effects 

of floor plan layout and PCB dynamics on solder joint reliability under thermal cycling 

test, as illustrated in Figure 3-2. The configurations comprised double-side mirror (back 

to back) assembly, double-side mirrored placement 50% offset relative to one another 

and single-side assembly. 



35 

 

 

Table 3-2 : Showing the configuration data 0.8mm and 1.6mm flip chips 

 

 

The test boards in Figure 3-2 depicted manufactured organic substrates industrial test 

boards, designed for both 0.8mm and 1.6mm PCB thickness. Each PCB were populated 

with fourteen flip-chips namely U19, U35,U20, U36, U27, U39, U28, U40,U23,U26, 

U31, U43, U34 and  U46 and eight other BGA chips not used in this study.  
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                                                       Flip chip 

Figure 3-2:  The flip chips locations shown in both sides 0.8mm and 1.6mm test 

samples                                                     

  Nomenclature of the Test Boards. 

The starting point in image acquisition involved using AMI techniques to monitor the 

performance of those joints at intervals, by removing the samples from the thermal 

chamber for scanning, throughout each thermal cycling test. During this stage, a 

consistent scanned solder joints image-numbering scheme was introduced throughout the 

image acquisition and image analysis to provide unique identification for each solder 

joint.  

The test boards and labelling Scheme are as follows: 

(i) Test Boards have a naming scheme of Board number _Finish type initial 

_Thickness 

Test Boards:  0.8mm HASL finish boards with board name DKTESTBD09 (BD09) 

has been named as H1_0.8_ BD09.  

(ii) In addition to this naming scheme, the scanned AMI images have been named:  

Front view 
Rear view 

U27 

U19 

U20 

U28 

U23 

U31 

U26 

U34 

U46 U43 

U40 U39 

U36 

U35 
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 Scanned Images: Board name_Transducer use_Component no_Test cycle no_ Scan 

type 

For example: for a 0.8mm HASL board where Flip chip number U46 is being C-

scanned after 4 thermal test cycles the image name for the 1st scan will be :  

BD09_230_U46_C4 

(iii) For Virtual Rescanning mode (VRM) 3D scan, it will be 

BD09_230_U46_C4_V1.  

Note: Virtual Rescanning mode has been used in this research work in order to access 

the scanned image data without completely rescanning the flip chips all over again. 

In this performance study, there are a large number of flip chips on each test board, each 

flip chip consist of 109 solder joints. Thus, it is paramount to label each solder joint as 

shown in Figure 3-3, under the flip chips for better clarification during the data 

acquisition and feature extraction.  The labelling scheme for each solder joint is depicted 

in Figure 3-3, which helps in providing crucial information about the position of solder 

joints for performance study. 

      

Figure 3-3 Solder joints labelling Scheme 

 

  Validation Testing 

In this research, validation test were computed for various purposes and in view of 

various goals doing this performance study in order to evaluate the reliability of solder 

joints on flip chip. Thus far, in electronics manufacturing, understanding the evaluation 

process of those packages in the early stage is important, as it aids in developing a 
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better/more efficient reliability requirement for the product. Most PCB’s assembly 

producers go for excellent standards to surpass client requests and desires. For example 

in avionics, defence or automotive industries, those packages requested by the clients 

may operate in very harsh environments during usage, so the reliability of those packages 

is a huge concern to the manufactures in order to prevent early failure and waste of raw 

materials in those products.  To convey an adequate performance study of solder joints, 

validation testing is a critical step in understanding reliability of those packages. It is vital 

to detect poor quality solder joints in those packages because these will cause poor 

electrical connection between a chip and a substrate, which can additionally affect the 

mechanical bonding that supports a chip to a substrate. Consequently, it is essential to 

recognize such damaged solder joints in PCBs at an early stages of the assembling 

procedure as the location at later stages will be more tedious, costly to repair and time 

consuming. 

In order to fill in this research gap, an experimental validation system has been developed 

in this performance study to explore the degradation process of the solder joints for 

diagnosis failure analysis purposes. The goal of this real life experiment is to design a 

thermal cycling technique for predicting the remaining useful life of solder joints on the 

flip chips of .8mm and 1.6mm thick circuit board assemblies as shown in Figure 3-2. 

Previous work in this research area conducted by Yang, (2012) and Braden, (2012), 

involved a thermal cycling experiment with an aggressive thermal profile from -40ºC to 

+132ºC. The purpose of this highly accelerated profile was to generate and obtain 

information fairly quickly on the life distribution and failure rate of the solder joints.  

Moreover, in this performance study, ATC is used to generate less rapid ageing of the 

flip chips components so that the effects of ageing  of the solder joints can be studied 

over a longer period. In other words, the main purposes of validation tests in this project 

is to use a softer thermal profile of -40ºC to +85ºC, typically used by some industries, in 

order to obtain more accurate measurement data spread over a longer test time, since the 

solder joint were expected to deteriorate more slowly allowing more accurate point by 

point assessment. These long-term solder joint reliability measurements were planned to 

provide a process verification and validation regime that can be usefully related to the 

operating environment in the field. This thermal profile has been implemented on all the 
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test samples of 0.8mm and 1.6mm HASL boards specified in this research work; it acts 

as a basis for through-life monitoring tests of solder joints to generate fatigue defects on 

custom designed test boards, and perform AMI scanning every 4 test cycles over a total 

period of 220 thermal cycles. 

The validation test reported within, was performed in Delphi Automotive Plc, which is 

one of the leading designers and manufacturers of automotive electronic controller units. 

The design of the experiments was conducted to induce different failure modes in those 

solder joints and also to determine the extreme stresses that the solder joints experience 

in order to improve their design.  

The thermal profiling data was measured by using type T thermocouples as shown in 

Figure 3-4. In this validation test, eight (8) Copper-constantan type T thermocouples were 

used, illustrated in Figure 3-5. These thermocouples were placed in each corner of one 

square block as shown in Figure 3-7 and one was placed on the centre of the test sample 

for monitoring temperature change.  

In other to monitor the air temperature chamber one thermocouple was also inserted in 

the chamber, as shown in figure 3-7 below. This type of type T thermocouples as shown 

in Figure 3-4 are suited for measurements in the −100 to 350 °C range (Agilent 

technologies manual).  In addition, they are often used as a differential measurement since 

only copper wire touching the probes were connected to the bench link data logger 3 as 

shown in Figure 3-6, which were also inserted on the printed circuit board. The 

thermocouples were arranged in such a manner that one was located in the air of the 

chamber and the others were attached to the two test samples as demonstrated in Figure 

3-5. From the thermal profiling, the logged temperature data was recorded using an 

Agilent 34972A data acquisition system.  

 

 

Figure 3-4: Type T thermocouple used for the thermal cycling test 
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Figure 3-5: Thermocouple Position on the Test Fixture during the validation test 

 

The graphic in Figure 3-6, shows the user interface of the configuration contains all of 

the instrument settings, scan settings and the graph settings of the Data logger 3 used in 

the validation test to study the performance of solder joints under the thermal cycling test.    

 

Figure 3-6: Image of Bench link data logger 3 used for the validation test 
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  Validation Experimental Procedures 

To estimate the reliability of solder joints in area array packaging in this research, a 

method was proposed for an accelerated testing set-up, in which printed circuit boards 

(PCB) with two thicknesses were subjected to life monitoring test to obtain the life failure 

data. When the experimental plan was created to evaluate the procedure of how to 

implement tests within a thermal chamber, the followings steps were essential in setting 

up the experiment: 

(i)  A chamber program for the experiment had to be developed. One of the 

requirements for the thermal chamber is that it has the capability of changing and 

maintaining the same thermal profile within the tolerances specified. 

(ii)  The chamber set points used in the program were checked to get close to the 

theoretical profile; the thermal profile should start and finish at ambient. 

(iii)  There were be no less than four TC in every test. The maximum temperature, 

minimum temperature and dwell time of every accelerated thermal cycling in the test 

must be constant. 

(iv)   During the preliminary test, four thermal cycles were run to understand if the 

chamber is getting to the set   point. 

(v)  During the period of the test, non-destructive evaluations such as scanning 

acoustic microscopy have been  conducted every four cycles to prudently evaluate the 

through life performance of the solder joints. 

 

  Test Set-up in the Thermal Chamber 

Different environmental conditions have a major impact on the reliability and durability 

of PCBs. Accelerated temperature cycling testing is the dominant test used to assess the 

performance of solder joints and to understand the mechanism behind future failure. The 

main objective rising from ATC is to subject the packages to thermo-mechanically 

induced stress, this results in creep and thermal fatigue- related failures that are usually 

the most significant factor behind failures of interconnections in most conditions where 
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electronics are used.  This part of this section aims to improve the current understanding 

of the reliability of solder joints using ATC. Such understanding will also aid the through 

life experimental setup for TC that is require for the performance test. 

 

Thermal cycling test was conducted in an Envirotronics thermal cycling chamber in 

which the environment temperature periodically changes from hot to cold, with a 

minimum and maximum achievable temperature of -70, to 180 °C, with no humidity, the 

ramp rate for the chamber was 12°C  and controller 7800. As shown in Figure 3-7 (a) and 

(b), the test boards with different substrate thickness were attached to a test fixture, placed 

horizontally in the thermal chamber in order to reduce the thermal lag they may induce 

and to obtain maximum flexure of the board. Bending the board in the \chamber causes 

displacement between the board and the components on it resulting in board failures or 

component interconnection. 

To estimate the reliability of solder joints in AAP, two set of test samples PCBs with 

various substrate thicknesses as shown in Figure 3-7(b) were subjected to several 

accelerated thermal cycling to obtain the life failure data. Figure 3-7(a), demonstrates the 

ATC preliminary test, with un-populated and populated PCB’s coupons, that were 

subjected to thermal cycling, to test the performance of the thermal chamber based on the 

thermal profile proposed. 

Having selected the required thermal profile of -40°C to 85°C, the next stage in the 

process is to ensure and verify that those test boards attain the desired temperatures. The 

results from this preliminary test are consistent with tests performed using the thermal 

profile. Based on these results, it was decided to conduct solder joints’ reliability tests 

using the same parameters proposed. The validation test was conducted by subjecting the 

flip chips on the test sample in Table 3-7,   to less severe conditions, than those that the 

samples will be experiencing at the normal operating environment.  Thus, some of the 

important factors to keep in mind doing the test are the temperature extremes, the ramp 

and dwell time. The cycles had 30-minute dwell times, because the longer the dwell time 

is, then there is a larger amount of accumulated creep damage, the ramp down was 25 

min resulting in 5 °C/min ramp rates, respectively, with 1 cycle for 60mins. The tests 

were conducted according to JEDEC standard JESD22-A104 recommendations. 
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                                                                     (a) 

 

                                                                      (b) 

Figure 3-7: : Image a) Showing the unpopulated test boards in the thermal 

chamber and b) showing the populated test boards attached to a fixture in the 

environmental chamber at Delphi automotive industry 

  Thermocouple System Related Error during the Validation Test.  

The accuracy specifications in this validation test includes measurement error, switching 

error and transducer conversion error. Thus, calculating the total thermocouple reading 

error is quite straightforward with the Agilent 34972A data acquisition system. This 

calculation has been done by adding the listed measurement accuracy to the accuracy of 

Test Board 
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your probe. For example, according to Agilent technologies data manual the input reading 

for type T thermocouple measurement is 100 °C, and the standard accuracy is  the 

thermocouple probe accuracy + 1.0°C., Likewise the probe specifies accuracy of 1.1°C 

or 0.4%, whichever is greater. Then the total error is the addition of the standard accuracy 

and the probe accuracy, which is equal to 2.1°C or -1.4%. In order to carry out the 

validation test, Table 3-3 shows the temperature profile used in industries according to 

several applications. 

Table 3-3: Accelerated temperature profile for modern electronic products 

Likewise, in order to estimate and describe the fatigue performance lifetime of those 

solder joints in  AAP, utilizing the methodology of the ATC experiment is paramount to 

age the life cycle of the AAP through the manner of placing the test sample in TC 

parameters conditions as show in the  table 3-4.  

Table 3-4: Thermal Cycling parameters 

                Usage            Thermal Profile (°C) 

   Consumer electronics               0 to 65 

    Wireless and Telecommunications             -40 to 85 

    Commercial Aircraft             -40 to 95 

    Military Aircraft             -40 to 125 

    Automotive-passenger              -40 to 65 

    Automotive-under the hood             -40 to 160 

 

Low Temperature (°C)  

 

      

  -40 

   High Temperature (°C)   +85 

    Ramp Rate     (°C/min)     5 

    Dwell Time    30mins 

 Number of cycles    4 cycles 

 Number of test samples     2 
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The parameters of the thermal cycling regime used in this evaluation study have been 

listed in Table 3-3 and Table 3-4, which provides the parameter representation of a 

thermal cycle profile that has been used for the validation test monitoring test. 

The main objective of using this kind of method is to induce failures or degradation of 

the solder joints on flip chips components of the test samples. In addition, to use the 

failure data and degradation observations during the validation test to estimate and study 

the reliability of the joints on different test samples as discussed in chapter 5 of this thesis. 

Although AMI inspections were performed at every 4 thermal cycle intervals as depicted 

in table 3-4, in order to get enough adequate failure data points. Due to the large amount 

of data and solder joints images obtained during the validation and inspection tests, only 

solder joints images taken at 0 cycles and 220 cycles are considered. A full dataset upto 

5terabyte is archived on electronic media located at the back of this thesis. The primary 

case studies investigated in this research work were:- 

(a) Single side flip chip placement (U23 and U46). 

(b) Double flip chip component placement (U19 and U35) and (U27) 

(c) PCB thickness of 0.8mm and 1.6mm HASL for scenarios (a) and (b), in order to study 

the influence of thermal cycling test on PCB thickness. 

 

  Non-Destructive Inspection Methods using Acoustic Microscopy Imaging 

Acoustic Microscopy Imaging (AMI) used in this performance study as shown in Figure 

3-9 uses a piezoelectric ultrasound source to scan across the test sample. This kind of 

ultrasound technique uses high-frequency ultrasonic energy, typically from 10 MHz to 

300 MHz pulsed from a focused lens, through a coupling medium such as distilled or 

deionized water (Yang, 2012).  Hence, by integrating the AMI technology in this 

performance, non-destructive defect detection of solder joints throughout thermal cycling 

tests can be achieved. In order to monitor and inspect those solder joints to determine air 

gap type defects such as cracks, voids, or delamination, the reflected pulse on the user 

interface of the AMI system as shown in Figure 3-8 was used to generate ultrasound C-

scan images. The subsurface reflected echo information about the test samples is obtained 

by moving the transducer lens vertically in the z direction, causing the point of focus to 
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vary in concert. Figure 3-9 shows the image of PCB test samples in the AMI system 

during the non-destructive inspection.  

 

Figure 3-8: Shows the user interface of the AMI system with a scanned image 

 

                               

Figure 3-9: Shows the Image of Test sample during the AMI inspection 

          

Flip Chip 
AMI User Interface 
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    Procedure established based on the AMI inspection 

In successfully carrying out the required experiment to study the thermal cycling 

performance on solder joints using ultrasound inspection, it is imperative to run 

experiments for known ultrasound inspection on solder joints, to affirm the technique. 

Thereby ensuring that a safe performance study is conducted during the validation 

process and repeatable /accurate experimental data set from the experimental work must 

be obtained. 

Thus, in order to conduct an AMI inspection to monitor the performance of solder joints 

under thermal cycling test, the following procedures were established: 

 A 230MHz piezoelectric transducer was used and placed in a fixed position. (The 

same for all measurements). The selected transducer was required because high 

solder joints image resolution and sensitivity can be achieved by using a high 

frequency transducer as shown in Figure 3-10(c). The 230MHz transducer was 

also the highest frequency available on the Sonoscan Gen 6 systems in the 

laboratory. The highest possible resolution of the C-SAM images of the solder 

joints is crucial to accurately quantify the performance of the solder joints images 

during feature extraction.  

 The set-up was first experimentally optimized resulting in chosen values as a 

trigger value of 0.590, channel gain value of 24.5, and front-end gain of 24 were 

used and held constant throughout the experiments, in order to ensure 

repeatable/accurate inspection dataset. 

Hence, using a piezoelectric transducer with the highest probable frequency is desirable. 

In order to select the most suitable transducer for this research work, preliminary scans 

were conducted using three different types of transducer 50MHz, 100MHz. and 230MHz 

on test samples as shown in Figure 3-10, which enabled images to distinguish various 

features  and get information like the package thickness of the test samples.   

The Figure 3-10 below shows images of solder joints with different transducers:     



48 

 

 

    

Figure 3-10: :  Ultrasound image of solder joints(a) 50MHz transducer, (b) 100MHz 

and (c) 230MHz transducer                        

As shown in Figure 3-10(a) and (b), low piezo electronic frequency transducers (50 MHz 

and 100MHz) were chosen in the first place to evaluate the solder joint quality at the 

expense of high resolution, in order to guarantee that our AMI would be able to penetrate 

through the flip chips. However, the image resolution on the ultrasound images acquired 

was too low to investigate the performance and the quality of those joints. Due to the 

limitation, of these low frequency transducers to evaluate the test samples, 230MHz was 

used. It is of note from the inspection that the operational frequency transducers such as 

230MHz provide better images with excellent resolution, but have a shorter wavelength 

than the lower frequency transducers. The acoustic energy in the signal does not penetrate 

very deeply and makes them limited to very thin samples due to lack of depth penetration.  

Likewise, the low operational frequency transducers provide lower resolution with longer 

wavelength as illustrated in Figure 3-10 above. Lower frequency allows more signal 

transmission through materials providing deeper penetration. Furthermore, the choice of 

transducer to be used for any non-destructive inspection is determined by the 

specification of the test board and flip chip design and the flaw spot size and depth of the 

sample materials.  

 The highest frequency transducer available in the Liverpool John Moores University 

Ultrasonic lab was the 230MHz, 0.25” focal length transducer, which provides excellent 

image resolution as illustrated in table 3-5. Likewise, F# in table 3-5 is the degree of 

focusing achieved by the lens of the transducer, and is determined by the lens diameter 

and its focus length. The F# is used to exhibit the beam focusing characteristic, for 

instance, if F# for two transducers are identical, the transducer will have similar resolution 

and depth of field if they have same centre frequency.  In Table 3-5 that follows, typical 

resolution and penetration depths for the chosen transducer listed: 

A B C 
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 Table 3-5: Transducer parameters 

 

 Table 3-6:  AMI test inspection parameters 

 

The inspection were conducted using the parameters in  Table 3-6, likewise, the time used 

to scan the test sample was 15 minutes per flip chip and was recorded. The image size of 

each flip chip used was 3336 x 3336 pixels, throughout the experiment to maintain the 

consistency of the experimental results. However, as mentioned in section 3.2.1, that the 

flip chips die thickness on the sample is 725um and the focal length of 230MHz 

transducer is 6.35mm (0.250 inch), the selected transducer is able of penetrating the test 

samples and imaging the chip to bump interface. The results from the AMI inspection 

using those parameters accurately showed the differences of the effects of variation in 

thermal cycling as relating to the ultrasound inspection of solder joints. Once the AMI 

images have been obtained from different cycles, the crack initiation, propagation, voids 

and defects on those joints can be analyzed and learned. 

 

  Data Collection and Observation 

This research involves a series of simultaneous experiments to analyze and measure the 

reliability of the solder joints in area array packaging. The data acquired during the course 

Frequency 

(MHz) 

Focal 

length 

(inches) 

Diameter 

(inches) 

F# Resolution 

(mils) 

 

(mm) 

Depth 

of focus 

(mils) 

 

 

(mm) 

10 1 0.25 4.00 20.375 0.518 670.866 17.04 

15 0.75 0.50 1.50 5.094 0.129 62.894 1.598 

20 0.75 0.25 3.00 7.641 0.194 188.681 4.793 

50 1 0.25 4.00 4.075 0.104 134.173 3.408 

100 0.5 0.25 2.00 1.019 0.026 16.772 0.426 

230  0.25 0.125  2.00 0.443  0.011 7.290  0.185  

Transducer 

frequency 

Focal 

length 

Resolution 

(Pixel) 

Trigger 

level 

Front 

end 

gain 

Channel 

gain 

Scan 

size 

Quantity 

to be 

scan 

230MHz 0.25inches 3um 0.590 24.0 24.5 10 28 chips 
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of study helped to support the novelty of this research work.   The data collection 

approach can be summarized as below: 

i)  Solder joints’ life in this research work was defined by the number of accelerated 

thermal cycles experienced before failure, recorded data during the test was 

exported from the thermal chamber using Agilent 34972A to excel for full data 

storage and analysis 

ii) To evaluate the solder joints conditions, Test boards sample were taken out of the 

thermal chamber to perform the ultrasound scans, the recorded data has been  

exported from the AMI using VRM (Virtual rescanning Mode) for data analysis. 

iii) AMI scans were perform every four cycles in this study on each test boards, in 

order to observe the cracks initiation on those joints, the data was exported to 

MATLAB for full data analysis, conclusions were derived from the acquired data. 

To successfully carry out the required validation test, a preliminary ATC test was 

performed on two unpopulated and populated PCBs circuit board assemblies with 

different thickness and the same material properties as shown in Figure 3-2, supported by 

appropriate data collection method as mention above. Thereby ensuring that a safe 

validation test is conducted and repeatable/accurate experimental dataset are obtained. 

  Image Segmentation and Feature Extraction 

In this research work, image-processing techniques were used to extract and segment 

distinctive solder joints image characteristics and features. In order to get the region of 

interest in the solder joint images, two image-processing steps were used in this research 

work. Hough Transform was used to detect the solder joints in the acquired AMI images. 

Then, image segmentation was performed on the solder joints images considered as the 

process of dividing an image into different regions with the same homogenous properties. 

In this case, the region of interest are derived on each solder joint in order to estimate the 

reliability of the joints. Analysis of this extraction method is presented in chapter 6 of 

this thesis. 
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  Through-Life Non-Destructive Monitoring of Solder Joints 

This research aims to develop a non-destructive monitoring system using ultrasound    

technology to assess solder joint through-life performance during thermal excursions. All 

the degradation data set acquired from the performance study were plotted to identify any 

distinctive failure pattern that occur during the validation test. During this stage, various 

failure phrase cycling durations are been estimated from the graphical results to find the 

crack initiation time of the solder joints using fracture mechanic- based models. These 

kind of fatigue models are based on the principle of defects existing in any solder joints 

during the validation test. From this, when a crack initiate, it can propagate through the 

solder joints area during the application of an applied stress, in this case thermal cycling. 

Nevertheless, by using these methods, the reliability of the solder joints may be derived 

according to (Liu, 2001) for characterising crack propagation behaviour through stress 

that occur as a function of time geometry and environmental conditions as suggested by 

Liu. Analysis of the test results are presented in chapter 6 of this thesis. 

  Chapter Summary 

This chapter features the methodology and techniques employed to monitor and estimate 

the reliability of solder joints under thermal cycling test. It is of note that solder joints are 

considered one of the vulnerable parts in area array packaging. Therefore the analyses 

and inspection of solder joints on those packages has become an important process in 

electronics manufacturing industries in order to adequately achieve the desired used level 

reliability during the mission life of those products. The above methodology and 

requirements have magnified the need for providing more accurate performance results 

on the reliability of those joints. This was achieved by conducting a validation tests on 

test samples and monitoring and estimating the reliability of those solder joints during 

the various ATC non-destructively using an AMI technique.   
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  Inspection of AAP throughout Thermal Cycling Tests 

using Scanning Acoustic Microscopy 

4.1 Introduction to the Inspection Requirements of AAP 

Despite over forty years of rapid technology advancement and exponential increase in 

electronic demand, the specialty of using SAM in life monitoring of the performance of 

solder joints under AAPs continues to receive scant attention in most reliability studies. 

In this chapter, the goal of using this type of technique is its ability to monitor and assess 

the through-life performance of solder joints during thermal cycling (TC) tests, in order 

to track any defect conditions, such as voids, delamination and cracks. Also to effect 

some understanding on how the imaging techniques work, including how the principle of 

operation involved could influence the test samples. 

As the demand for AAP functionality is getting higher, the packages are getting smaller, 

more complex to design and more prone to faults during manufacturing. Increasing 

demand and supply of AAP in industry tends to increase the number of advanced 

reliability research projects, based on the reliability and testing methods of those 

packages. This type of research could actually prevent any type of internal, external and 

functional faults or delamination on those packages in the future. In reliability studies of 

AAP, solder joints’ reliability tests are considered of paramount importance, because they 

are the items most affected by stress, under cyclic loading these causes unclearly seen 

laminar cracks, and solder bump defects on  packages during their mission life. 

   

Likewise, during usage, the cracks that occur in solder joints in the field always reduce 

local stiffness and cause material discontinuities in the AAP. However, if these solder 

joints’ defects are detected early using a non-destructive technique (NDT), some 

preventive measures can be implemented to avoid damage and possible failure in their 

mission life (Braden, 2012). Although, there are two different ways in which cracks in 

those packages can be detected: destructive testing and non-destructive testing. The 

destructive type of techniques involves physical damage of the test sample, and 

quantitative data is obtained, while the non-destructive type of techniques inspects the 

test sample without physically damaging it and also provides both qualitative and 
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quantitative data. These types of techniques have played a crucial role in the electronics 

manufacturing industries. 

Moreover, the NDT crack detection analysis has been demonstrated using some of these 

techniques such as infrared testing, Ultrasonic testing, Laser testing, and Radiographic 

testing as mentioned earlier in chapter 2. Consequently, ultrasonic inspection a type of 

Non-Destructive Evaluation (NDE), was developed in the 1940s by Floyd Firestone 

(Nobile, 2015). This type of inspection, played a pivotal role in the development of more 

improved and efficient processes, and their control measures employed in production and 

manufacturing.  

The ultrasonic inspection procedures use acoustic waves as a source to create Confocal 

Scanning Acoustic Microscopy (C-SAM) images of variations in the mechanical 

properties in AAP. During NDT inspection, the quality of the solder joints’ interface, 

delamination, cracks and other types of unexpected defect may be examine before and 

during the ATC tests. Based on technological evolution, simultaneous increasing in 

functionality of electronic products, always leads to scaling down in package size, which 

is consider as a major challenge in electronic manufacturing industries (Bogatin, 2015). 

Moreover, it has also been predicted by Ghaffarian, (2016) that the structural size of those 

packages will be in the order of few nanometers in the future. As reported by Chean, 

(2014) flip chip packaging alone is facing rapid growth owing to the present methods 

developed by the private sector. Therefore, based on the increase in the performance of 

the products, the actual technology gap between the AAP and the type of resolution 

required during the non-destructive inspection of those packages is getting wider and 

more complex. 

 

 

 

 

Figure 4-1: Technology gap between IC package size and NDT resolution methods 

(Aryan et al., 2018) 

The image originally presented in Figure 4-1 cannot be made freely available 

via LJMU E-Theses Collection because of 'copyright'.  The image was sourced 

at Aryan, P., Sampath, S. and Sohn, H., 2018. An Overview of Non-Destructive 

Testing Methods for Integrated Circuit Packaging Inspection. Sensors, 18(7), 

p.1981. 
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Therefore, one of the key aspects based on the current gap to NDT inspection techniques 

of those packages is the evaluation of voids, delamination, defects, cracks and artefacts 

using AMI. Assessing package reliability regularly requires the capacity to consider 

package interiors without destroying the packages. Ultrasonic (SAM technique) permits 

the user to examine various interfaces and determine the mechanical integrity of the 

assembly. The use of this acoustic microscopy for solder joints investigation of 

microelectronic packages has gained wide popularity. There are different types of 

acoustic microscopes that have been utilized in most common applications to study and 

evaluate interfaces in microelectronics devices, (Maev, 2008, Hafsteinsson and Rizvi, 

1984). Two are Scanning Laser Acoustic Microscope (SLAM) and Scanning Acoustic 

Microscope (SAM).  

SAM is the well- established method that has been used to inspect packages since 1970. 

SAM is a non-destructive technique that has the ability to measure defects such as 

delamination, cracks and voids in particular materials, and has been found successful for 

evaluating the reliability of AAP.  A main part of the SAM technique is the transducer 

used during the inspection, which converts electrical signals into acoustic signals and 

vice versa. Although all of the instruments make use of techniques that use high 

frequency ultrasonic energy (typically 10MHz and higher) to look into objects to detect 

defects or internal discontinuities in microelectronic packages. The most commonly used 

devices for ultrasonic receivers and transmitters are the piezoelectric transducer. 

In order to meet the necessary demands for higher resolution, accuracy, and fast and 

reliable surface defect analysis on those packages, the ultrasonic inspection (SAM) 

procedure with low power acoustic energy was used in this project for crack detection so 

that the samples are not damaged by low energy SAM/ acoustic scanning. This technique 

introduces high frequency ultrasonic waves into the test samples to obtain adequate 

information about the samples without damaging or altering them in any way. 

 

Thus far, several authors in literature have utilized NDT inspection methods to approach 

the matter of crack detection techniques, one such example was research work performed 

by Braden, (2012) in which NDT was used in through-life evaluation of solder joints. In 

this work, a key solder feature nucleating at the bump to silicon interface was captured. 
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The experimental results were further validated by comparing them with the Finite 

Element Analysis (FEA) to gain more understanding on the reliability prediction. 

Accordingly, this Ultrasonic inspection step involves the performance study of the stress 

imposed on the solder joints during the validation experiment, with respect to the failure 

criteria. Thus, based on the applicability and availability of the latest ultrasonic machine, 

which is the Gen6™ C-Mode Scanning Acoustic Microscope available at Liverpool John 

Moores University, the AMI inspection technique was used successfully in this project 

to inspect and study the solder joint through life monitoring.  The technique could actually 

inspect the micro bump soldering of various parts of the AAP. 

 

  Principles of Ultrasonic transmission 

This type of technique operates on the principles of ultrasonic waves. Ultrasonic waves 

are sound waves whose frequency is above 20 kHz and have been used for non-

destructive evaluation in various inspection environments. These kind of waves have the 

capability to penetrate optically opaque surfaces so outperforms optical inspection for 

hidden solder joints.  However, the depth of penetration decreases with increasing 

frequency, so the best resolution is only available for thin samples such as flip chips. 

Thus , AMI also known as SAM is an example of an ultrasonic system which makes use 

of the properties of the ultrasound waves, which  are mainly mechanical waves that 

transmit energy through oscillations of discrete particles in liquid or solid (Chean Lee et 

al., 2012). These waves are generated by a piezoelectric transducer in AMI, which are 

focused and transmitted to the test sample through a couplant in the form of distilled 

water (Aryan, 2018). There are two types of ultrasound waves, transverse and 

longitudinal waves, However, due to the inability of transverse waves to propagate 

through gases and liquid, AMI makes use of longitudinal waves, which propagate in the 

same direction as the particle motion. (Yang, 2012). These types of waves move from 

left to right and oscillate about their individual equilibrium positions. Longitudinal 

waves, also referred to as compressional waves, can be found in liquids, solids and gases.  

However, when an ultrasonic waves travel through different test materials, it is reflected 

back to the transducer as echoes. The transmits wave to further is scattered with respect 
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to the differences in acoustic impedance, which is the ratio of the acoustic pressure to test 

sample velocity as it passes through per unit area. Hence, the acoustic impedance of AAP 

materials is describe in details in Figure 4-2 

 

 

 

 

 

                Figure 4-2: Typical Acoustic Impedance Values (Sonolab, user manual) 

For inspection, it is noteworthy that the acoustic impedance that governs the amount of 

transmitted and reflected energy of dissimilar material interfaces can affect the amplitude 

and polarity of the reflected echo detected by the receiving transducer. Thus, in 

successfully carrying out the required inspection for imaging purposes, the main interest 

is the echoes reflected back to the transducer. These echoes have different amplitudes, 

polarities and time locations, which can give crucial information about the test sample 

being inspected. Important aspects of the information are density, layer thickness and 

flaws on the internal structures of the material.  

In this research, a technique called Acoustic Micro Imaging (AMI) has been used to 

monitor the performance of solder joints under ATC testing.  Ultrasound C-scan images 

were obtained from the Gen6™ C-Mode Scanning Acoustic Microscope, which has a 

most comprehensive range of accuracy and resolution, using a 230MHz transducer with 

0.250-inch focal length to scan all test samples. The selection of the type of transducer to 

be used to scan test sample is based on the package thickness and the expected size of the 

defects. 

Meanwhile, the available SAM is able to provide extraordinary resolution to detect the 

internal and external discontinuities in the test sample materials and the flip chip 

components on it. It is also important to know that acoustic image resolution varies with 

the sample material as well as the frequency of the sensor. A tradeoff between a low- and 

a high-frequency transducer is in the depth of penetration and resolution. The high 

The image originally presented in Figure 4-2 cannot be made freely available via 

LJMU E-Theses Collection because of 'copyright'.  The image was sourced at 

Sonoscan (n.d.). The Value of C-SAM® Acoustic Micro Imaging (AMI). Available 

at: < http://www.sonoscan.com/technology/ami-basics1-2.html> [Accessed: 20 July 

2018]. 

 

http://www.sonoscan.com/technology/ami-basics1-2.html
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resolution and sensitivity during the inspection could be achieved by making use of high 

frequency and focused transducer, at the expense of reduced penetration. 

 

  AMI Preliminary Study 

Ultrasonic transducers can be defined as a device that converts electrical energy to 

mechanical energy. Conducting an adequate study on the transducer is a critical step, in 

understanding the AMI inspection based on the penetration, resolution and focal length. 

Based on this phenomenon, the selection of the type of transducer to use for this particular 

inspection is an important factor that could affect the quality of solder joint image 

produced during the inspection.  

 

There are various type of piezo electronic transducers designed for a variety of 

applications in the real world. The capability of transducers can be defined and analyzed 

by the focal length and the frequency.  

The transducer resolution for an inspection has generated a lot of interest over the last 

century due to its application. Kino, (1987) suggested that the determination of a 

transducer to be used for a measurement can be selected based on Kino’s approximation 

equations, which is illustrated below 

                                       Beam Diameter = 
(FL∗V) 

(𝐷∗𝐹)
                                               Eq. 4-1 

In the equation FL is the focal length of the transducer, V is the acoustic velocity of the 

material to be inspected, F is the centre frequency of the transducer and D is the diameter 

of the piezoelectric crystal. By definition, the focal length of a transducer is the distance 

from the face of the transducer to the point in the sound field where the signal with the 

maximum amplitude is located (Olympus NDT, 2006). 

 

 Thus, the AMI can provide adequate information on defects of x, y, and z coordinates 

without re-scanning for every single layer with the transducer. The reflected ultrasound 

signal known as the A-scan as shown in Figure 4-3(b) contains various reflections in the 
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signal, which represent different layers in the test sample. The time-axis can depict the 

time of flight information of the test sample, while the intensity-axis can give crucial 

information about the amplitude and polarity of the signal components in the A-scan. 

Likewise, in order to get adequate desired depth the transducer needs to be moved from 

up and down in the z-direction. This feature, as shown in Figure 4-3(a) below has two 

advantages: it allows automatic focus adjustments to ensure all depths are in focus and it 

allows multiple electronic gating to provide images or slices at many different levels 

during a single raster scan. 

 

 

                                                                  (a) 

 

Silicon 

Transducer  
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Time 

(b) 

Figure 4-3: (a) Schematic of the C-SAM AMI Technique (b) showing the 

relationship between sound intensity and Time 

                                                               

It should be noted that the polarity of the echo can be determined by the equation 4-3 

below: 

                        % 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 =
2𝑍2

𝑍2+𝑍1
  ,                                   Eq. 4-2 

                        % 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 =   
𝑍2− 𝑍1 

𝑍2 + 𝑍1 
                                    Eq. 4-3 

 

 

 

 

 

 

Ultrasonic wave 

          Intensity 
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Where Z1 and Z2 are the acoustic impedances of the top and bottom of the sample 

materials respectively.               

 

                                       

Thus as shown in Figure 4-4(a), summation of the reflected and transmitted signal that is 

generated by the transducer is called the incident point, which is later analysed to produce 

an ultrasonic image as shown in Figure 4-4(b)  

 

  Advantages of Acoustic micro imaging inspection 

The main advantages of AMI inspection compared with other methods of inspection are 

as follows:  

 Excellent penetration of ultrasound waves into test sample boards allows the detection 

of variations such as delamination, voids and defects. Test samples from a few 

micrometers thick up to several metres long have been examined based on the 

transducer used (Yang, 2012). 

 AMI method is considered to be very accurate and sensitive and can locate many 

small artefacts on test sample as shown in Figure 4-5 that could actually contribute to 

the reliability of the test sample. 

a)               b) 

Case1 Z2 >Z1 

 
Case2 Z2 < Z1         Case3 Z2 = Z1  

     
 

    

Figure 4-4: a) Ultrasound echo polarity (b) Image showing the incident pulse 
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Figure 4-5: Images of some artefacts on U23 and U20 flip chips on 1.6mm board 

during AMI inspection 

 The method uses a pulse-echo technique, which enable access from only one side of 

a component, as required, by sending and receiving the ultrasound signals beneath 

the surface of the sample.  

 By using the Virtual-rescanning mode available on the AMI system, a 3D acoustic 

data record of the scanned samples can be digitally stored for evaluation and 

reconstructed later without rescanning the test sample thereby helping in time 

management.  

 The whole test sample can be scanned from the front to the back surface using the A 

scan signal generated by the ultrasonic system. 

 Acoustic signal data stored using the virtual rescanning mode, can be later processed 

using both acoustic frequency and time domain images (Zhang et al 2010), which 

allow delamination, cracks voids or any artefacts to be better characterized and 

analyzed. 

 

  Disadvantages of Acoustic micro imaging inspection  

 

The limitations and the disadvantages of AMI are listed below: 

 It is quite hard to interpret and analyse a cluster echoes on the A-scan during the 

inspection. 
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 AMI techniques require experienced operators to handle the machine, thus, the 

training required can be time-consuming to understand the mode of operation, and 

collect the best data when scanning the samples 

 Preparation and development of AMI inspection procedures is not straightforward 

and good scientific knowledge is needed for the analysis. 

 Some BGA components and other test samples are difficult to perform an inspection 

test on due to complex multilayer structures. 

 To analyse any delamination, defects or voids on any test sample an additional 

processing technique is needed. Likewise, to calibrate the machine, the standard 

operational manual is required. 

 

  Data presentation of Acoustic micro imaging 

Ultrasonic data using SAM could be acquired and analysed in various formats. This 

section will briefly introduce the commonly used formats like A-scan, B-scan, and C-

scan.  

 

  A-scan Representation 

Amplitude scan (A-scan) is the clearest technique in AMI that gives the fundamental 

information about the test sample. It is the basic approach to store the received raw signal. 

In other words, an A-scan in an AMI is defined as a graph of sound intensity against time. 

The profundity of a reflector in the test sample can be analysed from its echo in the A-

scan as demonstrated in Figure 4-6. An A-scan shows the propagation time for the sound 

to travel to the test samples and back, the polarity and amplitude of the received signal. 
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Figure 4-6:  Typical A-scan Image from Gen6™ C-Mode Scanning Acoustic 

Microscope 

Any identified layer of interest can be gated from A-scan signal. Thus, an electronic gate 

was been placed on the sub-surface echo in Figure 4-6, which enables selection of a 

portion on the A-scan. The width of the gate in this case is actually wide enough to cover 

the top surface silicon and the innermost structure of the flip chip. In addition, by applying 

an electronic gate on the echo, only the desired image of a specific interface is revealed 

in the lower trace window as shown in Figure 4-7 below.  

 

Figure 4-7: Typical C-SAM image acquired using the selected gate in Figure 4-6 

Figure 4-7 displays the C-SAM image of solder joints obtained from the selected gate in 

the A-scan of Figure 4-6. From those C-SAM images acquired from A-scans of a layer 
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of interest, the failure modes in solder joint interconnection on those flip chips could be 

studied. 

 

  B-scan Image 

The B-scan is a 2-D profile image. it displays the directional view of the test sample, as 

illustrated in Figure 4-8 (Sonoscan, 1999), the operational frequency transducer is 

connected to two displacement sensors, which measure x and y position coordinates to 

the test samples. The x-axis can show the time of flight information or the depth 

information. The y-axis is the signal amplitude and polarity information. This, enables 

the  location of a void at a particular thickness of the test sample. This kind of technique 

is usually employed to analyse the image appearance of a bulk test sample. The B-scan 

image is visual and has been used to provide distorted dimensional information of the 

sample if the object appears much thicker than the original size. 

 

   

                        Figure 4-8: B-scan in a cross section along an x-y plane  

  C-scan Image 

This is an image of the test sample in the x-y plane, which is known as C-scan mode, as 

shown in Figure 4-7, only the echoes restrained by the gate  at that particular plane are 

used to generate a CSAM image as illustrated in Figure 4-6. This type of inspection scan 

is widely used in package evaluations and for failure analysis, and enables the analysis 

the differences between one images from another. This tool is non-destructive, which 

gives the reliability engineers more opportunities to widen their knowledge in reliability 

testing. The available scanning acoustic microscopes are used to monitor the performance 

Transducer 

Y 

Ultrasonic wave 

wave 
B-Scan 

X 
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of solder joints. Sonoscan and other systems are capable of providing extraordinary 

resolution. However, the image resolution of the system varies with the scanned sample 

material and most appropriate, the transducer selected for the work.  

 

  Image Analysis of solder joint  Using AMI 

AMI uses high-frequency ultrasonic energy, typically from 10 MHz to 400 MHz. The 

pulsed from a focused transducer through a coupling medium such as distilled or 

deionized water into the unit to be tested were used to determine air gap type defects such 

as cracks, voids, or delamination. The reflected pulse acquired in the A-scan during the 

inspection study has been used to generate ultrasound C-scan images in this project. The 

important feature of this tool its non-destructive probing that gives continuous 

opportunities to monitor the performances of solder joints during thermal cycling tests, 

and with a high image resolution. 

There are so many solder joints images in this project that look the same on the surface, 

but within their compositions lie different characteristics that constitute their texture and 

appearance. The ability to compare two or more images and finding delamination, cracks 

or voids on those images in a large collection is a tricky matter and it takes a careful 

procedure for the task to be successful. In order to carry out the analysis, AMI solder 

joints images were acquired based on reflected echoes on the A-scan, where the intensity 

level is proportional to the ultrasound signal reflection strength. If there is a defect in the 

solder joints during the validation test, the intensity will be higher due to larger reflection 

strength. Therefore, intensity level of each joints and the shift in histogram of the region 

of interest which is the grey region at the centre of the joints are key features which help 

to classify defects in this research study.  

 

 Images of Solder joints under flip chip at different ATC using AMI 

Based on the current knowledge about thermal cycling test on PCB, an experimental 

framework to acquire the solder joints images under ATC test was designed as shown in 

Figure 4-9. The first stage is the test board’s preparation, whereas in the second stage, 

non-destructive inspection was performed on the test boards using a SAM system before 
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the preliminary test. To further investigate  the performance of those joints under the 

PCB’s, a validation test was conducted on 0.8mm and 1.6mm HASL test boards on every 

four cycles, and the solder joints’ digital images were acquired using SAM 

simultaneously as shown in the flow chart in Figure 4-9. By using that SAM technique, 

the microscopic images were obtained and recorded.  

Nevertheless, the ultrasonic machine as illustrated in Figure 2-3(b) in chapter 2 has a 

novel 3D scanning mode technique called Virtual Rescanning Mode (VRM) that could 

collect high quality acoustic images data.  It does this by scanning the test samples at 

every coordinate and collecting and storing the array of A-scan signals. The main 

advantage of using this kind of scanning mode is that the stored A-scan signals can be 

analysed as a 3D cube of data samples at the later date, virtually reconstructing the AMI 

images without the presence of the test sample.  

 

 In order to collect high quality AMI images consistently throughout the whole 

experiment, an acoustic scanning strategy was designed as mentioned in chapter 3, which 

includes the type of transducer used,   scanning resolution, scanning area, focusing 

position, image size, and data organisation that really helps in the analysis of the data. 

Likewise, the resolution and penetration of the digital images depends on the type of 

transducer used. However, in different AAP the types of delamination in the package 

require different AMI configuration settings during their non-destructive inspection. In 

this research work, a 230MHz transducer was used to collect the acoustic data, because 

this kind of transducer is preferred in flip chip solder bump, and stack die inspection for 

optimum resolution. 
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Figure 4-9: Test Framework showing the AMI acquisition strategy 

 

Before the scanning of the test samples began, the selected 230MHz piezo electronic 

transducer was carefully placed in the system in order to prevent the transducer cable 

from resting on the splashguard. Hence, in order to get accurate measurements of the 

samples the transducer was moved up and down in the axial (or z) direction, to adequately 

permit the focal length of the transducer being used to penetrate the silicon die and focus 

on our region of interest. 

After the test samples were subjected to  each ATC test cycle , this technique was 

confirmed by the AMI scans of the solder joints on the flip chips of the test samples, after 

0,28,40,48,128, and 192 thermal cycling test using 230MHz frequency transducer as 

demonstrated in Figure 4-10 . As depicted in Figure 4-10, each scanned image contains 
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109 solder joints of 125um height position at the periphery of the package. The solder 

material used was Sn 52.9%, Pb 45.9%, and Cu 1.2% with a bump diameter of 140um. 

 

Figure 4-10: Images of solder joints after different thermal cycles 

From Figure 4-10 images b, c, d, e and f, evidence from the images above has showed 

that the grey region in the middle of the  solder joints  appear brighter than at 0 cycle in 

Figure 4-10(a), as the ATC increased. Also looking at bright circled solder joints at the 

corner of the flip chip in figure d, it can be observed that the innermost grey area of the 

solder joint also appears to be getting brighter as the thermal cycle increases and the same 

can be said for the middle and the outermost part of the solder joint in Figure 4-10(f) 
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which has turned into a brighter and greater spot. Which illustrated that the corner joints 

on those flip chips have the lowest levels of reliability during the validation test. It is also 

important to know that the cap size is larger when defects occur, thus the area and the 

form factor of the region of interest is another important feature to aid in clarifying the 

performance of solder joints under thermal cycling test. 

Although, the complexity of the whole procedure during the inspection is time consuming 

but has successfully helped to enable to the differentiation between good and fractured 

joints. Thus, helps to verify and keep tracks of the through-life monitoring process as the 

thermal cycle increases, that later helps to track the failure or cracking propagation in 

them.  

Furthermore, the ultrasonic inspection method will be of great benefit to the electronic 

industries. By improving the understanding behind the in-depth analysis of the 

performance of solder joints under various thermo-cycling scenarios using AMI. This 

will enable engineers to have the necessary requirement for evaluating the reliability of 

the solder joints in AAP. 

 

  Chapter Summary 

This chapter provides the background knowledge and theories that constitute an acoustic 

micro imaging inspection system. It illustrates the use and purpose of C-mode scanning 

acoustic microscope (C-SAM) in order to generate the acoustic images needed for the 

performance study. It is of note to know that the quality of the monitoring of the 

performance of solder joints during ATC test also relies on the image resolution that 

could be acquired by the AMI system. In order to get a better resolution, the system makes 

use of high frequency ultrasound to detect internal discontinuities in materials and 

components. The three modes of operation of the system was described. It is of note that 

the low frequency transducer has lower resolution and the high frequency transducer has 

a finer resolution. The merit and demerit of using the AMI system were been mentioned. 

A more detailed analysis and discussion about the through-life monitoring of solder joints 

using AMI under thermal cycling test is presented in Chapter 5. 
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  Through Life Monitoring of Solder Joints using ATC 

Chapter 5 is devoted to accelerated thermal testing and reliability of solder joints 

manufactured on flip chips to PCB. The performance evaluation of solder joints under 

ATC using image-processing techniques were also presented and discussed. Thus far, the 

reliability of solder joints in area array packaging is the probability that the various 

components on those packages perform their intended function without any failure and 

within specified performance boundary for a specified period in their life cycle 

application environment. Reliability prediction according to Rao, (1996), has the 

following advantages: (i) To prevent production loss including outage repair and labour 

costs, (ii)To  optimize maintenance cycles and spares holdings, (iii) To maintain the 

effectiveness of the components on the products through optimized repair actions, (iv) 

To help in the design of future products, by improved safety margins and reduced failures.  

 

Generally, reliability testing starts with selecting the test method to study the performance 

of the test samples. In this project for instance, the concept of accelerated temperature 

cycling (ATC) test was used, because a product is exposed to daily temperature variations 

resulting from environmental conditions, localized heating and self-heating. The 

temperature fluctuations can produce fatigue in the product and this will accumulate over 

time.  This kind of validation testing focuses on these phenomena to help evaluate the 

effectiveness of solder joints in AAP. Likewise, among the many environmental testing 

methodologies for assessing reliability of a product, ATC has becomes more paramount 

and is the most commonly used for the characterization test of various devices as well as 

interconnections. 

 

Reliability of solder joints in this performance study is considered as a function of thermal 

cycling time that has been estimated by observing the life cycle of solder joints on the 

flip chips components surviving at a particular time. For instance, the continuous process 

and the constant loading of solder joints during thermal cycling tests cause them to 

degrade over time. Nevertheless, the reliability data obtained during the through-life 

monitoring test of solder joints are then utilized to study the effects of thermal cycling 
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tests on various test samples for predicting the reliability of the flip chips under normal 

operating conditions using statistical analyses.  

  Accelerated Thermal Cycling Test to Study Solder Joints’ Reliability 

In order to investigate the study of solder joints’ performance in through-life monitoring 

tests under ATC, the ATC test was conducted in order to achieve the desired thermal 

profiling on the 0.8mm and 1.6mm test samples with a hot air solder levelling (HASL) 

finish. HASL finish was used in this performance study because of its excellent wetting 

during component soldering. Understanding the use of different test boards of the same 

finish but different substrate thickness is critical to getting the optimum performance of 

the solder joints under thermal cycling. An example of a thermal profile is depicted in 

Figure 5-1. 

 

  

Figure 5-1: Shows the thermal profile used for Validation Tests on 0.8mm and 

1.6mm Boards 

Subsequently, the thermal cycling test was conducted at Delphi Automotive Plc, to help 

understand the impact of thermal profiles on the test samples. Previous work conducted 

by Yang, (2012) and Braden, (2012), carried out  a life monitoring test on solder joints  

0.8mm 

1.6mm 
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under very harsh conditions, with the thermal profile -40ºC to +132ºC,  which resulted in 

total solder joints failure after about 100 thermal cycles. Their main purpose of using a 

highly accelerated profile was to generate the cracks, on those solder joints in the shortest 

possible time. Thus far, the sample intervals were insufficient to track the failure modes 

with sufficient accuracy.  Due to the limitation of failure data of solder joints in the 

previous work done, a new profile of -40ºC to +85ºC was developed in the performance 

study of solder joints under thermal cycling test; that led to a slower failure process, which 

enabled finer tracking of crack propagation in solder joints. It also facilitated the 

development of an image feature based joint fatigue degradation model for through-life 

monitoring of crack propagation that may lead to prognosis of electronic devices. 

 

Before commencing the validation test, an initial ATC test was conducted by subjecting 

the unpopulated and populated 0.8mm and 1.6mm test boards as discussed in chapter 3 

to verify that those test samples can achieve the thermal profile designed. The test 

vehicles were subjected to four thermal cycling tests to understand if the thermal chamber 

is getting to the set point. The preliminary results as depicted in Figure 5-4 and 5-5 

confirmed that both the unpopulated and populated 0.8mm and 1.6mm thick circuit board 

assemblies can achieve the thermal profile. Subsequently, a non-destructive evaluation 

technique such as scanning acoustic microscopy was used to examine the flip chips 

components on the boards before the ATC test. The effectiveness of the SAM inspection 

techniques on the flip chips is shown in Figure 5-2 to reveal the nature of those solder 

joints before the validation test. 

 

Figure 5-2: Initial Scan of Solder Joints on flip chip before ATC Test 
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In addition, Figure 5–3 shows the mounted flip chip of U19 in the test sample (a) and 3D 

X-Ray image (b), which shows the ball grid array design.  

 

  

Figure 5-3: (a) Optical image of the solder joints (Yang, 2012), (b) 3D X-ray image 

of the solder joints 

In addition, 3D X-ray was also performed initially on the ball grid array demonstrated in 

Figure 5-3, to depict the performnace of solder joints before the ATC test. The X-ray 

inspection as previously mentioned, is one of the NDT inspection techniques for 

inspecting the internal struture of the flip chips on AAP. This technique was used to 

ascertain the nature of those solder joints. The reason for this test may be summarised as 

product performance through life test, comparison of different substrate thickness on test 

boards, and quality assurance for the remaining useful life of the test boards. Finally, the 

experimental results are presented. 

 

 Thermal Cycling Result Response of Unpopulated 0.8mm and 1.6mm HASL 

Boards under ATC Test 

Mostly electronic devices often operate under varying thermal conditions. An example is 

that of cyclic thermal excursions in the automobile engine compartment, railway traction 

system and wind turbine. Thus, during this thermal cycling, failure of solder joints on the 

electronic devices could occur for various reasons during their desired useful life. For 

example, the coefficient of thermal expansion mismatch between the substrate and PCB 

Solder 

joints 
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causes creep of the solder joint. Thus, in order to improve the failure rate the performance 

of solder joints during thermal cycling test must be determined and estimated. 

The validation test presented in this section was based on unpopulated 0.8mm and 1.6mm 

thick circuit board assemblies. This thermal test was conducted on the unpopulated test 

samples to demonstrate whether the desired thermal profile are achieved. Analyses from 

the test results were used to monitor and estimate the reliabilities of different test samples. 

Nevertheless, the thermal cyclic interface response of the test samples as shown in the 

Figure 5-4 depends on a number of factors. Some of the factors are the thermocouple 

locations, the temperature profile, the stress-free condition, the ramp time, dwell time, 

the composite of the packages. Therefore, the unpopulated 0.8mm and 1.6mm HASL 

finish test samples as shown in Figure 3-7(a) were subjected to a thermal -40°C to +85°C 

for every four thermal cycles. The resulting profile of unpopulated test samples as shown 

in Figure 5-4 has the temperature (Degree C) on the Y-axis, the time (minutes) on the X-

axis .The graph also shows that 30mins-dwell time, and the new thermal profile of -40ºC 

to +85ºC is sufficient for the PCB to reach the temperature of the chamber.  

The thermal profiling data collected from the validation test of unpopulated 0.8mm and 

1.6mm board thickness was collected by using a type T thermocouple as mentioned in 

chapter 2. Hence, the accuracy of the interface response in unpopulated 0.8mm and 

1.6mm HASL PCB has a profound effect on the reliability estimates and in decision 

making on the performance of solder joints under ATC. 
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Figure 5-4: Thermal profile for unpopulated 0.8mm and 1.6mm test board 
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  Thermal Cycling Result Response of Populated 0.8mm and 1.6mm HASL 

Boards under ATC Test 

Understanding the thermal profiling process in the initial accelerated life test of 

unpopulated 0.8mm and 1.6mm test samples has really helped to conduct this validation 

test on populated PCB. As it aids in developing a more efficient validation test procedure. 

In this section, a subsequent attempt was conducted on the populated test samples. The 

thermal profiling logged temperature data results for populated 0.8mm and 1.6mm HASL 

finish thick circuit board assemblies which are presented in Figure 5-5. The analysis of 

the test results presented in this section was based on the populated test sample of 0.8mm 

and 1.6mm thick circuit board assemblies that are used to monitor and estimate the 

reliabilities of on the solder joints on the flip chips. As previously mentioned, in section 

5.1.1, that TC test is mainly used to evaluate the life performance of solder joints 

subjected to thermal profile. 

The thermal profile data used to compare both populated 0.8mm and 1.6mm HASL finish 

test boards was acquired from the thermal chamber by using a type T thermocouple as 

mentioned in chapter 2. The test parameters as illustrated in table 3-4 in chapter 3 remain 

constant throughout the whole validation test, with thermal profile -40ºC to +85ºC, the 

dwell time for both maximum and minimum temperatures was 30 minutes. This test was 

carried out on the populated test samples to mainly monitor and demonstrate whether the 

desired thermal profile can be achieved. The thermal profile data used for populated test 

samples is depicted in Figure 5-5. It is precisely clear that the graphical results accelerated 

thermal profile is suitable to evaluate the components on the test samples. 

 From the presented results in Figures 5-4 and 5-5, it has been found that the desired 

thermal profile could be achieved using the same thermal chamber. The analysis steps 

described above, depicted that the new thermal profile -40ºC to +85ºC selected for this 

study will lead to a slower failure process during the performance study, which enables 

finer tracking of defects in solder joints on the circuit board assembly.  

The resulting graph in Figure 5-5 ramps perfectly with the thermal chamber. Based on 

these validation test results, the ATC test was conducted on the test samples using the 

same thermal profile throughout the test in order to verify and analyse the reliability of 

solder joints in AAP. Thus, the AMI inspection was also considered in this performance 
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study to be carried out every four (4) cycles interval, in order to monitor any initial 

delamination on those solder joints during the validation test 

 

Figure 5-5: Thermal profile for populated 0.8mm and 1.6mm test board 
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 5.2 The Effect of 0.8mm and 1.6mm HASL Thick Circuit Board Assembly 

Thickness on Solder Joint Life 

Different electronic markets and applications nowadays often require manufacturers to 

use different designs for the final stage of their products in order to exceed customer 

demands and expectation, one of which could be the thickness of the PCB. The 

methodology of using ultrasonic inspection techniques employed in this research has 

enabled the effect of substrate thickness on the reliability of 0.8mm and 1.6mm HASL 

PCB floor plan layout to be studied and analysed. 

The substrate thickness effect analysis presented in this section was based on the fourteen 

flip chips on the 0.8mm and 1.6mm HASL test samples as shown in Figure 3-2 in chapter 

3. The thermal profile used was -40ºC to +85ºC.  The solder joints reliability data obtained 

from this ATC test are time-to-failure measurement for each test sample at different tests. 

However, results from this study were used to extrapolate the flip chips components 

characteristic of each test sample needed to study the reliability of solder joints on them. 

The effect of thermal cycling on the test samples was achieved by subjecting the 

components to 220 thermal cycles. The analyses of the test results between each flip chip 

on 0.8mm HASL test samples is plotted in Figure 5-6 which was used to estimate the 

reliabilities and failure rate of the AAP in order to achieved the desired objective.  

Although the results obtained from the test suggested that the solder joints’ performance 

on the flip chip on 0.8mm HASL board is limited to different thermal cycling on the Y-

axis, additionally, the analysis in Figure 5-7 shows the variation of the cycle to failure as 

a function of solder joints on the flip chip component. This  indicates that the flip chips 

on the 1.6mm HASL board have a better reliability compare to 0.8mm substrate thickness 

board during the through-life monitoring test because the duration of the fatigue failure 

on the flip chips is relatively long.  

Thus, Figures 5-6 and 5-7 depict the thermal cycling failure rate results of 0.8mm and 

1.6mm HASL thick circuit board assemblies, obtained through the validation test on the 

fourteen flip chips components. The bar analysis in Figure 5-6 and 5-7 denotes that the 

flip chip is more fragile when there is an increase in thermal cycling. 



79 

 

 

 

 

Figure 5-6: Failure rate of 14 flip chips on 0.8mm board thickness under thermal 

cycling  

 

 

Figure 5-7: Failure rate of 14 flip chips on 1.6mm board thickness under thermal 

cycling  
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  Findings based on the effect of PCB thickness on solder joint life 

The thickness of the PCB board and the materials used changed the overall performance 

of the board under environmental exposure. Thus, it is of note that many PCB parameters 

can affect reliability of solder joints on the flip chip components. Apart from the PCB 

thickness as mentioned earlier, other parameters that could affect them are the floor plan 

layout and physical constraints placed on the PCB. Hence, the physical constraints 

considered in this performance study of solder joints under thermal cycling tests were 

due to five mounting screws placed at the corner of each test fixture during the validation 

test. 

In this research study, solder joints with the same height of 125 micrometres and solder 

bump diameter of 140 micrometres were investigated to study the effect of PCB thickness 

on solder joint life. These studies have been carried out on two different HASL boards of 

thicknesses of 0.8 mm and 1.6 mm PCB. The monitoring data used to differentiate them 

was generated using a -40 to +85 °C, with 5 minute ramp and 30 minute dwell times as 

shown in Figure 5-5, because the longer the dwell time during the ATC test, the longer 

the time to failure. The shorter the ramp rate, the longer the time to failure. The shorter, 

the thermal profile, the longer the time to failure. Hence, combining good dwell times, 

suitable ramp rate and low thermal profile range can optimize the performance testing of 

solder joints’ interconnects’ durability. 

From the analysis results, it can be observed from Figure 5-6 that the solder joint’s life 

on the flip chips component decreases as the PCB thickness decreases. In addition, the 

package shows a better performance on a thicker board under thermal cycling tests, which 

is because the thicker boards are more compliant, that helps in reducing the amount of 

viscoplastic work in the solder joints. Hence, when comparing the reliability of 0.8mm 

HASL thinner PCB and 1.6mm HASL thicker PCB, there is a two-fold difference in 

fatigue lives of solder joints under some flip chips of U46, U27, U43 and U35, an example 

of this is depicted in Figures 5-6 and 5-7.  
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Furthermore, the reliability of flip chips components are often expressed in numbers of 

stress cycles by using the Engel Maier fatigue model (Xiaoyan et al., 2017) which is an 

improved version of Coffin-Manson model as shown in Equation 2-1, and takes the 

thermal cycle frequency, temperature effect and elastic-plastic strain into account.as 

shown in the Equation 5-1 below: 

                                 Nf =  
1

2
( 

∆𝛾

2𝜀𝑓
)1/𝑐                       Eq. 5-1 

 Where Nf is the number of cycles (fatigue life), εf is the fatigue ductility coefficient, c is 

a constant that relates the average temperature of the solder joints and the time for stress 

per cycle and Δγ is the total shear strain range. However, a 3D failure simulation results 

for the predicted fatigue life of 0.8mm HASL board for each solder joint on flip chip 

components using the same thermal profile of -40-+85 °C , is depicted in Figure 5-8. The 

Finite element model and analysis using global approach was developed by industrial 

partner. 

 

Figure 5-8: 3D predicted plot showing cycles to fail of solder joints on 0.8mm CBA 

Vulnerable joint 
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Nevertheless, the analysis simulation results depicted in Figure 5-8 help to make some 

novel findings on differences between AMI life measurement under thermal cycle test 

and the predicted fatigue cycle on 0.8mm HASL board. In the simulated results in Figure 

5-8, joints number one is highlighted in red and located in the upper left of the graph. The 

predicted simulation results depicted consistency with the theory that solder joints that 

have lower level of reliability are always located at the corner of the package, and have 

least number of thermal cycles. However, more corner joints failed during the AMI 

monitoring test of solder joints as illustrated in Figure 5-9. The inner joints and outer 

solder joints are plotted in two different colours for better illustration. A 3D failure 

distribution for all 109 solder joints for U46 flip chip of 0.8mm board, which was a double 

assembly flip chip was constructed and is depicted in Figure 5-9. The AMI failure cycles 

result shows that all the corner joints have significantly lower levels of reliability during 

the validation test as different thermal cycles. 

 

  

 

 

Figure 5-9: Depicted AMI failure cycles of 109 solder joints under U46 Flip chip on 

0.8mm HASL board 

Vulnerable solder joints 

Solder joint at the 

inner joint row of 

the flip chip 

Outer row 

solder joints 
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Figure 5-10: Depicted AMI failure cycles of 109 solder joints under U46 flip chip on 

1.6mm HASL Board 

 

Figures 5-9 and Figure 5-10, demonstrated that the reliability of solder joints on the flip 

chips under thermal cycling test degrades at different failure rates. The solder joints with 

the red bar at the corner of the flip chip package as depicted in Figure 5-9 and Figure 10, 

are considered as the vulnerable solder joints. In the simulation results, it was found that 

the vulnerable solder joint that shows the lowest level of reliability at a very low thermal 

cycling test is joint number one as labelled in Figure 3-3. Hence, the AMI measurement 

depicted in Figure 5-9 was used to verify if the prediction global model is accurate. Based 

on AMI results, the vulnerable joints that show the lowest level of reliability at a very 

low thermal cycling are joints 1, 92, 55 and 38. It can be seen that failures of the corner 

joints in Figure 5-9 initiated after 16 to 20 thermal cycles. This shows that the AMI 

measurement is more accurate to detect the performance of the solder joints at different 

failure rates corresponding to the joint location on the flip chips. Thus, the reliability of 

those solder joints is generated with respect to the thermal profile being used in this 

research study. 

For this work the AMI results presented in Figure 5-11 to 5-14 compare the results of 

0.8mm and 1.6mm HASL boards in terms of relative reliability using U35, U19, U27 and 

U23 flip chips as case study. Consequently joint 1 (highlighted in red on the 3D graph 

Vulnerable solder joints 
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plots) on the flip chip for is considered as being a vulnerable joints under thermal cycling 

test. It is important to know that mostly the corner joints has the least number of cycles 

to failure during validation test. The reliabilities for all other bumps are calculated with 

respect to increase in thermal cycling test. Also from the monitoring graphical results, it 

is noteworthy to know that solder joints suited under the flip chips exhibit different 

thermal cycling rates and different levels of reliability. The reliability levels can vary due 

to the floor plan layout and influences of some other components. 
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                                                                            (b) 

Figure 5-11: AMI 3D plots showing thermal cycles to failure for (a) U27 flip chip on 

0.8mm and (b) U27 flip chip on 1.6mm board 
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                                                                         (b) 

Figure 5-12: AMI 3D plots showing thermal cycles to failure for (a) U23 flip chip on 

0.8mm and (b) U23 flip chip on 1.6mm board                                                         
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                                                                                 (b) 

Figure 5-13: AMI 3D plots showing thermal cycles to failure for (a) U19 flip chip on 

0.8mm and (b) U19 flip chip on 1.6mm board                                                         
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(b) 

Figure 5-14: AMI 3D plots showing thermal cycles to failure for (a) U35  flip chip 

on 0.8mm and (b) U35  flip chip on 1.6mm board                                                         

 

 

 

  Discussion based on the Result of the Effect of PCB thickness on solder joint 

 In this subsection, the following discussion shows how the validation experimental 

methods has been established in finding the variability of the ATC parameters and its 

effect on the reliability of different test samples of 0.8mm and 1.6mm HASL boards. 

However, the time of failure of many flip chips on the area array packaging was estimated 

based on conducting a validation test using the constant ATC parameters and by using 

the theoretical basis shown in Figure 5-11 to analyze the failure mode. It is of note that 

solder joints are eutectic alloys, for example tin and lead. The material behavior of those 

joints under various thermal cycling tests, leads to changes in their mechanical properties. 

At this moment, the CTE mismatch between the substrate and the die generates the failure 

of the solder joints on the flip chip components carrying the applied thermal stress, which 

leads to deformation.  
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However, understanding the role that thermal cycling has on  the different test samples 

on HASL finishes was used to estimate and monitor the reliabilities and failure rates of 

those flip chips as shown  in Figures 5-6 and 5-7.  The graphical plots in  Figure 5-6 and 

5-7 shown that the performance of the solder joints under thermal cycling test is greatly 

affected by different floor plans layout of the components.  As mentioned earlier in Figure 

3-3 in chapter 3, the 0.8mm and 1.6mm with HASL finish test boards have 109 solder 

joints at different locations under each flip chip on each test sample. The flip chip 

components are all rectangular in shape, hence, the location and geometry of each joint 

on the flip chips may also dictate the failure mechanisms based on the thermal stress. 

According to Yang, (2012) in his thesis, the distance of each solder joint to the neutral 

point in this case, could also lead to thermal strain. Nevertheless, other factors can also 

affect reliability of the solder joints on the flip chips during the ATC test, for example, 

the temperature range during the test, the dwell temperature, geometry of the solder joints 

and the co-efficient thermal expansion mismatch between the substrate and the silicon 

chip as shown in Figure 5-15. 

Thus, by considering the extent of the coefficient thermal expansion mismatch as the 

main factor in which the substrate expands more than the chip, in this manner the tensile 

stress is moving towards the direction of the substrate and the opposite direction of the 

chip side.  

 

    (a)                                                                  (b) 

Figure 5-15:  (a) Solder joint before ATC test  

(b) Deformation in solder joint due to ATC. 
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 Moreover, the difference in the thermal expansion rate imposes a thermo-mechanical 

stress on the solder joint between the die and substrate (Pang et al., 2001). The constraint 

to silicon chip expansion is much greater on the cooling process than the heating process 

(Rao Tummala, 1996).  Thus, based on the inspection analysis, previous research in this 

field (Yang,2012) has stated  that the defect in between the chips and the substrate will 

provide a large acoustic impedance mismatch, which in return will produce higher 

intensity images during the AMI inspection.. Moreover, from previous research (Clech 

et al., 1996, 2005, 2009) (Teng et al., 2002; Shih et al., 2004; Wu et al., 2014), there are 

many differing opinions on the effect of board thickness on solder joint 

reliability.  According to those authors, modelling  indicates that thicker (stiffer) boards 

afford less mechanical compliance and shorter ATC life, but the work in this section, 

which has been based on the effect of thermal cycling test on 0.8mm and 1.6mm HASL 

finish with non -under fill solder joints is vice versa to the findings. 

 

  Performance Evaluation of Solder Joints’ Life under ATC using 

Image Processing Technique. 

In this performance evaluation section, part of the main objective is to be able to track  

and study the rate of increase in intensity of those solder joints, which may occur from 

the continuous ATC test, performed on the test samples. Thus, once all the solder joints’ 

images have been acquired completely from the performance study, the image must be 

analyzed using the feature extraction techniques in order to identify and study the crack 

initiation, propagation rate and the time of failure during the ATC test. Therefore, using 

image processing techniques is critical to getting the optimum performance of solder 

joints from those acquired C-SAM images. 

Consequently, the first step involved after image acquisition is by selecting the area of 

interest in the solder joints’ scanned images. In this study, the centre of the joints as shown 

in Figure 5-16 were selected in the solder joints images to be the region of interest (ROI), 

because they are the main area of interest in the joints that provide all the functions needed 

to perform their operation in mission life.  Therefore, the rate of change in the intensity 

level of those solder joints have been considered as the main features that will aid in 
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classifying the performance of those joints. However, in order to extract the region of 

interest, segmentation techniques were used at the initial stage. Performing a 

segmentation technique on those joints to get the region of interest is straightforward as 

it has clear boundaries to process as illustrated in Figure 5-17. Likewise, taking a closer 

look at the extracted circle ROI in Figure 5-17, there are a number of interesting events 

that occur in the region that should be involved in the evaluation of those images. 

 

                

(a)                                                                          (b) 

Figure 5-16: a) Shows the nature of several solder joints before ATC test  

         (b) Shows the nature of similar solder joints after ATC test 

 

          

Figure 5-17: Shows a region of Interest of a defective solder joint after ATC Test   

respectively. 

 

Solder Joint 

Region of Interest 
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Figure 5-17 shows the region of interest of a single joint on U46 flip chips, 1.8mm board 

at 88 cycles. Furthermore, the thresholding segmentation method was employed in the 

image segmentation, which aims to separate the grey levels of pixels belonging to an 

image that are substantially different from the grey levels of the pixels belonging to the 

background.  This type of technique is an important image segmentation method, which 

is termed as the main basic preprocessing step in feature extraction analysis and has 

become an effective tool to separate objects from the background. Some of the examples 

of thresholding applications used in image processing for non-destructive testing have 

been documented by (Chen et al., 2009).  

Several authors in literature have also utilized the  threshold technique according to the 

type of information they want to exploit. Some of those authors are Solihin  et al., (1990), 

in which this technique was applied to an image by using histogram based thresholding 

segments to divide an image into various regions based on pixel intensities, which is later 

applied to handwritten character identification. Likewise, Sang  et al., (2007) utilized this 

kind of technique in their work based on the knowledge based adaptive thresholding 

segmentation of digital subtraction angiography images.  Otsu, (1979) proposed a method 

for choosing the optimal threshold to minimize the within-class variance. Thus far, Kapur 

et al.,(1985) introduced a method for determining the optimal threshold to maximize the 

entropy. Meanwhile Hou et al., (2006) also suggested an optimal threshold method to 

minimize the sum of class variances. However, among the types of thresholding 

techniques cited, Otsu’s thresholding method could be referred to as the most popular 

method due to its non-complex and efficiency during segmentation (Jung-Min et al, 

2014). This method has been represented by using Equation 5-2:  

                          Pi  
𝑛𝑖

𝑀𝑁
 , Pi ≥ 0  ∑ 𝑃𝑖

𝐿−1
𝑖=0 = 1                                                    Eq. 5-2                          

Represent let M × N pixels of a given image by L grey levels {0, 1, 2… L −1}. The 

number of pixels at level i is denoted by ni and the total number of pixels is denoted by 

MN = n0 + n1 +…..+ nL−1. The grey-level histogram is then normalized and regarded as 

a probability distribution. 

The segmentation technique has been implemented in those solder joints in Figure 5-18 

to separate out regions of an image corresponding to objects, to analyse.  Thus, 
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segmenting the region of interest of the solder joint with a full black ring is straight 

forward as it has a clear boundary to process. This separation technique has been based 

on the variation of intensity between the object pixels and the background pixels of those 

single solder joints. 

The figure 5-18 shows the typical single solder joint C-SAM images that demonstrate the 

process of increase in the intensity in ROI of solder joints number nine 9 subjected to 

different thermal cycles, under U19 flip chip of 0.8mm substrate board. 

 

Figure 5-18: Intensity level and histogram of region of interest of joints number nine 

(9) after a) 0, b) 28, c) 48, d) 128 and e) 220 cycles of U19 flip chip of 0.8mm board. 

With respect to the objective, the intensity level of ROI’s of the solder joints before and 

after the TC test have been demonstrated in Figure 5-18. When examining the 
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performance of the solder joints image, according to the work conducted by Yang, (2012) 

the intensity of the solder joints will be higher if there is a defect on the joint. Thus, the 

histogram graphical results justify the performance degradation of those joints generated 

by the validation test. It has been found that increasing thermal cycling test, has a range 

of effects on the intensity around the grey area at the centre of the solder joints. In 

addition, by observing those single solder joints’ images, it shows that there is distortion 

and structural changes of the ROI under thermal excursions. Another observation is that 

the intensity of the histogram keep shifting and increasing from low intensity to high 

intensity as the TC increases. This has been considered as an indication that the crack 

could occur in this region. 

As I mentioned earlier, the round grey area in the middle of every joint represents the 

integrity of the joints, which denotes the bonding between the die and the solder bump. 

However, from the observation noted from the acquired C-SAM images, it is going to be 

more difficult to analyse the level of cracks or delamination in those joints by just using 

human visual inspection. Hence, using feature extraction methods will make it much 

easier to analyse and segment the solder joints images during performance analysis.  

  Using Structural Similarity Index to Analyze the Solder Joints  

To further investigate more about the difference and to examine  the difference  in those 

solder joints at different thermal cycling tests, a numerical index comparison using 

statistical methods  is employed to determine the degree of similarities between the 

images got from each variation in the test. The principal idea underlying the structural 

similarity approach is that the human visual system was adapted to extract structural 

information from visual scenes and therefore a measurement of structural similarity 

should provide a good approximation to perceptual image quality assessment (Wang, 

2002)(Al-Najjar, 2012). 

The SSIM index is a function of images denoted T5, T4, T3, T2 and T1 in Figure 5-18 

respectively. Assuming one of the images to have a good quality, the SSIM index in this 

scenario has been regarded as a quality measure of the other images. The algorithm 

computed in MATLAB separates the task of the image quality measurement into three 

parts: structure, contrast and resolution. The image of the solder joint at T1=0TC was used 

as the reference or template image while the images of solder joints at T2=28TC, 
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T3=48TC and T4=128TC and T5= 220TC   were being used as the matching/distorted 

image. 

Below are the results as got from the MATLAB Toolbox 

The SSIM Index between the reference image ‘0’ and distorted solder joints image 

‘220TC’ is 0.949. 

The SSIM Index between the reference image ‘0’ and distorted solder joints image 

‘28TC’ is 0.987. 

The SSIM Index between the reference image ‘0’ and distorted solder joints image 

‘48TC’ is 0.972. 

The SSIM Index between the reference image ‘0’and distorted solder joints image is 

‘128’ is 0.966. 

For more information regarding the MATLAB code for this work please refer to the 

Appendix B in the CD at the back of this thesis 

In addition, in order to improve human knowledge in the classification process, and for 

correlating the performance of solder joints under TC test, the mean intensity value 

scattered analysis graph was constructed. Due to the symmetry feature, flip chip location, 

and likewise the effect of the thermal cycling test on those test samples, U46 flip chip of 

Board number 09 of 0.8mm substrate thickness was used for the analysis. From the 

resulting diagram in Figure 5-19, the image features obtained by the AMI techniques such 

as intensity can easily distinguish between a healthy and fractured joint. The graphical 

results shows the typical mean intensity increases of all the 109 solder joints under the 

test sample during temperature cycling.  Thus, for performance analysis, the graph has 

been divided into two periods, before and after the ATC test. The maximum intensity 

value was around 180 at 88 thermal cycles, while the mean intensity of the good joint is 

in the range of 43- 85 for 0 TC.   
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Figure 5-19: Scattered graph showing the  mean intensity of 109 joints under BD09 

U46 Flip chip, 0.8mm at 0 to 88 Thermal Cycling 

However, the figure in 5-19 depicted the intensity plot of U46 flip chips solder joints at 

0 and 88 cycles. With regard to the 3D diagram as shown in Figure 5-20, the changing 

trend for each solder joint intensity rate is similar at low thermal cycling, whereas  the 

intensity of those solder joints increased drastically as the thermal cycling increased. 

However, due to the geometry position of the U46 flip chip on the circuit board assembly 

as shown in Figure 3-2  and the substrate thickness of the board being used, all solder 

joints failed at 88 thermal cycling, which led to the removal of the flip chip on the test 

sample. In other words, as the board thickness and overall stiffness decreases, the 

resulting stress the solder joint, without under fill experiences, increases. 
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                                                                   (a) 

 

 

Figure 5-20: Depicted the Mean Intensity of 109 joints on U46 Flip chip of 0.8mm 

Board, at 0cycle to 88 Thermal Cycling 

                                                                          

Solder joint at the inner 

row of the flip chip 

Solder joint at the inner 

row of the flip chip 

(b) 
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 Chapter Summary 

In summary, a validation test was conducted in Delphi automotive industry for a whole 

year in order to quantify the reliability of solder joints on different test samples. By using 

available industry standard thermal chambers. Thus, in order to estimate and determine 

the reliability of solder joints on area array packaging, an appropriate printed circuit board 

for the test was designed as shown in Figure 3-2. For different test samples designed for 

this experiment, the test samples had various area array packages configurations, different 

surface finish and two substrate thicknesses to enable reliability testing, so that the failure 

rates of those components can be monitored to achieve the desired specifications. 

A thermal cycling test with the thermal profile -40ºC to +85ºC was conducted on the test 

samples as illustrated on the resulting graphs in Figure 5-4 and 5-5. Analysis of the test 

results was used to monitor and estimate the relationship between the unpopulated and 

populated PCB under different thermal cycling tests in other to achieve the desired 

specifications. The thermal profiling data were analysed as shown in Figure 5-1 to 

demonstrate the accelerated cycling test used to acquire information quickly based on the 

life testing of those joints. This was achieved by subjecting all the test samples to the 

validation test such that a slow enough failure process, enabled finer tracking of crack 

propagation in solder joints, was observed will be discussed in chapter 6. 

 It is of note that the thermally induced stresses in those solder joints are the result of CTE 

mismatch of the various materials in the area array packaging (AAP). Thus, analyses of 

the test results as shown in Figure 4-10(d), noticed that after 44 thermal cycles, defects 

begins to occur on the corner joints of 0.8mm board, due to the increase in the reflected 

acoustic wave intensity of those joints as shown in figure 5-20. A novel finding was that 

the thicker the substrate thickness, the longer the solder fatigue life for the results from 

0.8mm and 1.6mm PCBs used. Hence, solder joints on the thicker board show 

significantly high solder joint reliability. 

With respect to the objective, evidence from this study has depicted that the corner flip 

chip solder joints have the lowest reliability on both the PCB’s as shown in Figure 5-6. 

However, findings also demonstrated that the failure distribution on those solder joints is 

often influenced by the floor plan layout of the components.    
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Finally, by studying the variation in the acquired data, the test results will be used in 

chapter 6 next, for reliability monitoring of solder joints. Then to produce an 

extrapolation analysis to try to predict reliability of solder joints at use. 
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 Crack Initiation in Solder Joints of 0.8mm and 1.6mm Test 

Boards 

After the validation test, the next step involved in this research is to detect, analyse and 

estimate any solder joints’ defects that could contribute negatively to the reliability of 

solder joints in the packages. This chapter also presents and examines a novel method for 

solder joints defect evaluation using geometrical and time-domain feature extraction 

methods. This was demonstrated to analyse the reliability and failure rate results of solder 

joints under validation test. Thus, the AMI solder joints images acquired during the 

validation test was used to affirm the reliability of those solder joints in the test samples.  

  Solder Joints Crack initiation measurements in AAP 

One of the major challenges in the reliability study of solder joints under ATC is to be 

able to determine when the cracks will initiate, propagate or when a solder joint will fail 

completely in AAP. As previously mentioned in chapter 2,  the defects on those solder 

joints are very difficult to identify using some of the NDE like X-ray because of their test 

samples’ size limitations, and a long data acquisition and image reconstruction makes it 

a challenge during the monitoring of solder joints under thermal cycling test. However, 

in order to analyse and estimate the defects in those solder joints, real AMI solder joints 

were collected at different ATC times to monitor the fatigue degradation rate of those 

joints. Thus, due to the large amount of data collected at various intervals during the 

thermal cycling test, only the solder joints shown in the Figure 6-1, was selected for 

reliability analysis study. 
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Figure 6-1: Layout of the solder joints in the flip chips 

In this reliability study, there are 109 solder joints on each flip chip, the labelling of each 

joint has been depicted in Figure 6-1, and the selected solder joints marked in green colour 

are used for performance analysis. Hence, those solder joints were selected based on the 

distance to the neutral point. It is noteworthy that the thermal strain on those solder joints 

was related to the distance of the solder joints to a neutral point (Clech et al., 2009). 

Nevertheless, the solder joints at different locations on the chip may also have different 

fatigue behaviour and failure mode this is mainly due to the thermo-mechanical, which 

is dependent on the joint position (Magnien et al., 2017). Based on  the AMI images 

acquired during the validation test and monitoring test as shown in Figure 4-10 (d)  it is 

noted that the solder joints on the flip chips begin to fail at  the corner joints, this factor 

is also considered when selecting the joints in the solder joint assembly during thermal 

test. 

Thus far, various approaches have been used in this research work to study the fatigue 

life of those joints as discussed in section 6.2.  

  Solder Joints Crack Initiation Detection Using Image Processing 

Techniques 

Estimating the crack growth in solder joints allows for determining the load bearing area 

of the joint as a function of service lifetime (Nielsen, et al., 2014).  However, according 

to Huang et al., (2010), by using fractured mechanisms, the cracks that occur in solder 

joints can develop in two stages, namely crack initiation and crack propagation to failure 
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during usage. Nevertheless, Darveaux, (1993) shows that crack initiation under thermo-

mechanical loading occurs in the first 10% of the fatigue life.  His  approach was based 

on using the sum of a crack initiation period and crack growth in the test sample to predict 

the lifetime performance of the product which is referred to as the Energy-based method 

using non-linear Finite element analysis (FEA). Some researchers as previously 

mentioned in chapter 2 of this thesis, who have studied the reliability of solder joints so 

far rely on detecting the failure in them through measuring the Finite element analysis or 

based on assumption. 

Now the actual question is how to characterize, monitor and estimate the failure rate and 

reliability of AMI solder joints images under thermal cycling test. Thus far, different 

researchers have used different criteria to work on the field. For example, in previous 

works (Yang, 2012;Braden, 2012), two image features named as crack plane diameter 

and intensity were examined. The initial results showed that the image features have a 

strong relationship to the crack size. Nevertheless, in order to determine and estimate the 

reliability and the failure rate of  AMI solder joints images in this research work, massive 

expansion of image data as shown in Table 6-1 was acquired using the acoustic micro 

imaging technique. 

Table 6-1: Shows the solder joints data acquisition table 

 

After the image acquisition, classifying and analyzing those images were considered 

mainly as vital research issues for detection of cracks. A significant contribution of this 

research was to automate the solder joints’ extraction methods and employ it for effective 

reliability analysis of solder joint under environmental testing. This was accomplished by 

using two feature extraction methods namely the geometrical and the time domain 
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features as described in this chapter.  The analysis results were used to demonstrate the 

reliability of solder joints. 

The analysis was achieved after the segmentation process as illustrated in Figure 6-2, in 

which the reliability and the failure rate of the solder joints was extracted by using a 

fracture-based model. The objective of using this type of model in this research work was 

to characterize the crack propagation time, which was used for detailed solder joint failure 

analysis.  Consequently, the geometrical feature extraction methods such as form factor 

and area were extracted from the AMI images obtained, the objective is to verify and 

estimate the reliability and fatigue degradation of solder joints during ATC test in order 

to achieve the desired conditions. Although, the result accuracy obtained in defects 

detection in this reliability analysis can be useful in defects analysis. 

 

  Strategies used in estimating solder joints behaviour under validation test 

Estimating the reliability of solder joints under validation test in this research work 

involves various series of steps. In other words, the solder joint images must be analysed 

prior to the feature extraction process illustrated in chapter 3 in order to estimate and 

identify the distinctive image features. This consequently requires multiple image 

processing steps for the extraction of meaningful quantitative information.  An outline 

of a strategy used to analyse the solder joints images in this research is presented below: 

i) Load solder joints images from the file directory 

ii) Applying Histogram equalization to improve the contrast in images 

iii) Image segmentation.  

After performing the histogram equalization on the solder joint images, the next step is 

to perform image segmentation. Segmenting the grey area of those solder joints with a 

full black ring is straightforward as it has a clear boundary to process.  Puneet et al., 

(2013) stated that image binarizing is a process that divides the image into two different 

parts namely black and white. Thus, the solder joint images acquired comprise of two 

parts during the validation test as illustrated in Figure 5-10 in chapter 5, and has a bright 

background over a dark background.  One way to extract the background is to 
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automatically determine and select a threshold T that separates these regions, using the 

equation 6-1: 

                                                        G (x, y) = 1 If f(x, y) > T                                Eq. 6-1 

                                                                     = 0 Otherwise 

Where g(x, y) is the thresholded binary image of f(x, y). We can implement the 

thresholding operation in MATLAB by the following function: 

                                                              g = im2bw (f, T)                                         Eq.6-2 

The first argument f gives the input image, and the second argument T gives the threshold   

value.  The level value of 0.5 corresponds to an intensity value halfway between the 

maximum and the minimum value. This level value was found to work well with all the 

solder joint images.  The threshold value was set based on the contrast between the solder 

joint back outer background and its surrounding ROI’s.  

                  (iv) Using Hough Transform to detect the solder joints in the AMI images.    

This type of method aims to find circular patterns within an image. If a circle in an image 

is described by using the equation 6-3: 

                         (x-a) 2 + (y-b) 2 = r2                                              Eq. 6-3 

  Where (a, b) in the equation 6-3 are the coordinate of the circle centre and r is the radius, 

then an arbitrary edge point x and y will be transformed into the circular cone in (a, b,r) 

parameter space (Mohamed et al., 2005). This method was implemented in the acquired 

AMI images by using the Opencv library (Bradski, 2008) in python as shown in Figure 

6-2.  Opencv is good for image processing and computer vision tasks, which is user 

friendly. Figures 6-3 and 6-4 show and verify the use of Hough transform in detecting 

the solder joints. 
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Figure 6-2: Image showing the command for detecting solder joints in AMI images 

using Open cv 

   

Figure 6-3: Results obtained by using Hough Transform to detect solder joints 

  

 

iv)   Clearing border object (Imclearboarder) has been used to obtain the 

region of interest as an indication of solder joint bonding quality in 

the ultrasonic images.  

v) Feature Extraction: feature extraction is the step taken to segment and 

extract features that represent the integrity of the solder joints’ 

images. Two features extraction were used namely:  

i) Time Domain feature: using standard deviation  

Detected 

solder joints 
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ii) Geometrical feature : Using the area and perimeter to find 

the form factor which is Form Factor =(4πX 

Area)/(Perimeter)2           

The Figure 6-4 show basic block diagram of image binarization. 

       

Figure 6-4: Block diagram of Image binarization 

6.3   Image Segmentation and Feature Extraction 

The proposed integrated crack initiation and propagation methodology were divided into 

various section as shown in the flow chart Figure 6-5: 
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Figure 6-5: Framework showing Pre-processing and feature extraction Algorithm 

This section presents a novel approach to monitor the performance of solder joint using 

the time domain feature and the geometrical feature, with the objective to determine the 

extreme stress that those solder joints experience before failure that portrays the fatigue 

crack initiation and propagation life of solder joints under thermal cycling tests. During 

the statistical analysis stage as depicted in Figure 5-9 in chapter 5, it is observed that the 

effect of temperature cycling on fatigue evaluation only for one solder joint, on the flip 

chips on different test samples,  is not enough to determine and compare the reliability  

of other solder joints under the validation test.  Obviously, this is due to different stress 

states experienced by various joints that actually affect the fatigue life of solder joints.  

Moreover, when examining the solder joints images in detail, it was discovered that the 

images in Figure 6-6 contained different backgrounds and formed different geometrical 

patterns under thermal cycling test. For preprocessing purposes, there are two stages 

involved in the segmentation process of those solder joint images, firstly, all the selected 
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solder joints: in order to highlight the region of interest thresholding was done in order to 

eliminate the background noise as discussed in chapter 4. 

Image processing as shown in Figure 6-4, secondly is to extract an image of the ROI from 

each solder joint. The relationship between the solder joints during thermal cycling in the 

image and the initiation time is derived and analysed using the image processing 

technique in MATLAB toolbox. During the segmentation process, the first technique 

used was histogram Equalization as illustrated in Equation 6-4. For example, the intensity 

of a pixel in an image is represented by ‘I ‘and the integer pixel intensities ranging from 

0 to L − 1. Where L for an 8 bits image will be  L=28=256, Thus, possible intensity values 

going from zero representing black to L-1=255 representing white.  

 

                𝑝𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
                                          Eq. 6-4 

Where n = 0, 1, L-1. In addition, p is the normalized histogram of image. 

This technique was performed to enhance the contrast in the acquired images and to 

equalize intensity in an image so that the details in those images were observed more 

easily. Next step is Image segmentation, which is a process of partitioning the acquired 

images into different segments as depicted in Figure 6-4. There are two stages involved 

in the segmentation process. The first stage is extraction of solder joints from the acquired 

image as shown in Figure 6-3. Note more extracted solder joint images for 0.8mm and 

1.6mm thick circuit board assembly are available in the disc at the back of this thesis.  

The second stage is to extract the region of interest from them Figure 6-4. However, this 

type of method is considered as the first important step in the pre-processing. According 

to Frew (1997), this technique was carried out by assigning a particular label to each pixel 

in the image such that each pixel with the same class shared common characteristics 

(Frew et al., 1997). In other words, in performing the segmentation on those images, the 

pixels which represent both the background and the bright region are grouped into 

meaningful regions.  
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Figure 6-6: Examples of extracted single solder joints images 

The result in Figure 6-7 a, b, c and d shows the thresholded images of U46 flip chip of 

0.8mm HASL thick circuit board assembly. Note: The U46 flip chip was the first chip 

that came off from the 0.8mm board during the thermal test after 88cycles. This shows 

that the solder joints at U46 flip chip of 0.8mm HASL board has a low level of reliability 

during the thermal test. 
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                                                               (a) 

 

Solder joint ROI 
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                                                                (b) 

 

                                                                  ( c ) 
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                                                                      (d) 

Figure 6-7: Variations of joint numbers a) 64, b) 44 c) 95 and d) 17 of U46 Flip chip, 

on 0.8mm board at different Thermal Cycling test cycles 

      

In order to facilitate image segmentation after the first step, the next step is to eliminate 

the black spots on the extracted solder joints that could contribute negatively to the 

performance analysis of the joints; this could be termed as the cleaning stage. Figure 6-

7, shows that the extracted solder joints are composed of regions of interest with black 

inner spots. The black spots inside those images are the result of small pits in the solder. 

These black holes in the ROI were mended by using region filling, so that all the ROI can 

be extracted from the background more correctly.  

Thus far, the regions of interest of the solder joints have been extracted using 

segmentation, closed or open holes as illustrated by Somasundaram. K., et al, (2010), 

could occur on those acquired solder joints after image segmentation, because of the 

shape of those joints. This happens because the solder joint has passed through various 

TC conditions. Likewise, those holes can be more confusing when analyzing the 
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performance of those joints during thermal tests.  Therefore, dilation and erosion of 

morphology was used to eliminate those holes as shown in Equation 6-5 and 6-6. 

According to Sreedhar et al., (2012), dilation of A by the structuring element B that 

defines the neighbourhood of the pixel of interest is expressed by: 

                                                                             Eq.6-5 

The dilation function assigns a value of the corresponding pixel in the output image. In a 

binary image, if any of the pixels is set to the value one, the output pixel is set to one. 

While the erosion of the binary image of A by the structuring element B according to 

Sreedhar et al., (2012), can be expressed using the equation 6-6  

                                                                        Eq.6-6 

In a binary image, if any of the pixels is set to zero the output pixel is set to zero.  

Furthermore, the region filling was applied after the elimination process to mend and 

close those spots. These techniques are based on a set of complementation, dilation and 

intersections (Gonzalez et al., 2002). Gonzalez further illustrated that the centroid of the 

region usually describes the contents (or focus points) which are surrounded by a 

boundary, which is referred to as the region’s contour. This was carried out by using a 

built-in library function from the MATLAB image processing toolbox.  Thus, the main 

contour function of bwlabel was also implemented in MATLAB that labels all the 

contours in the images and  compared and finds the area of the largest contour in the 

images. It is of note from previous research (Pande Ankita 2013) that contour also known 

as border, is a kind of technique in image processing, that is applied to digital images in 

order to extract their boundary. This preprocessing technique according to Pande Ankita 

(2013) was performed on the acquired solder joints images in this study, in order to 

extract significant information about their general shape after going through different 

thermal cycling tests.  

Based on this, a built-in function of region-props function command has been 

implemented in MATLAB that finds out the area of the joints. The calculation of region 

props done with MATLAB was performed using the Equation 6-7 (The math works Inc): 
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                                AL = 
1

𝑆2𝐹
 [regionprops (‘IL, Centroid’)]                   Eq.6-7 

 

Where: S2
F is the constant square of image xy- resolution and IL the label image  

Likewise, in order to find the maximum diameter of the Region of Interest in the solder 

joints, all the boundary points of ROI were determined using bwboundries command. 

The MATLAB Image processing function used for this purpose is shown in the equation 

6-8 below: 

                                      C = [(yc, xc)] = bwboundaries (IB, Nb)                          Eq.6-8                         

Which is defined by: C is the array of the contour points; IB is the imfill, while Nb is the 

neighbour pixels (Joanna Sekulska et al, 2011). Nevertheless, contour smoothing was 

carried out in the closing process by applying the Elliptical Fourier Descriptors (EFD) in 

Equation 6-9  and 6-10 (Joanna Sekulska, 2011) 

𝑥′(𝑐) = 𝑎0 + ∑ (𝑎𝑛 cos
2𝜋𝑛𝑡

𝑇
+ 𝑏𝑛 sin

2𝜋𝑛𝑡

𝑇
)

𝑁

𝑛=1
                            Eq.6-9 

                             

𝑦′(𝑐) = 𝑐0 + ∑ (𝑐𝑛 cos
2𝜋𝑛𝑡

𝑇
+ 𝑑𝑛 sin

2𝜋𝑛𝑡

𝑇
)

∞

𝑛=1
                           Eq. 6-10 

 

Which is defined as ‘T’ is the number of steps required to traverse the entire contour in 

an image, while a, b, c and d (n) is the frequency coefficients to create a smooth boundary. 

The rules for calculating the values have been demonstrated in Neto et al., (2006). Where 

(t) is, the step needed to traverse pixel along the contour. Once the contour of a given 

pattern is extracted, its different characteristics will be further examined and used as 

features  which also plays a key role in the measurement algorithm for geometrical 

classification. Therefore, correct extraction of the contour in those solder joints will 

produce more accurate image features, which will increase the chances of correctly 

classifying a given pattern.  
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However, in order to evaluate the variation in solder joints shape, a further analysis was 

carried out in this work. According to a reliability study conducted by Rahman, et al 

(2014) the quantity of solder paste and the soldering conditions could contribute to the 

irregularity of the shape of those solder joints during thermal cycling tests. In addition, 

“Imclearborder” is a function in MATLAB, that was also required in the image 

processing to search for the border and when it finds it, removes all the other structures 

connected to it. This gives a pixel value of one to the ROI in between and suppresses all 

the other values around the region. Further analysis of the region of interest in the 

acquired solder joints during the feature extraction phase, is shown in the Figures 6-8 a, 

b, c and d. These describe the elimination process by using region filling and also show 

every characteristic of what one could actually refer to as ‘ROI’s shape irregularity phase’ 

where there are several ROI’s shapes during the thermal excursions. 

 

 

 

(a)    
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                                                             (b) 
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                                                                          (c ) 

 

                                                                          (d) 

Figure 6-8: Different shape patterns Region of Interest of joints a) 64, b) 44 c) 95 

and d) 17 of U46 Flip chip, 0.8mm board at different Thermal Cycling test cycles 

                                                  

Those images above disseminated the preprocessing carried out on the acquired solder 

joints images. The feature extraction techniques were applied to those images, which can 

efficiently remove the effect of reflection that occurs during the test while keeping all the 

properties of the acquired image constant. Thus far, it is noteworthy to know that the 

major cause of fatigue failure in the solder joints is the TC deformation of the joint by 

the stresses encountered during the ATC test combined with the CTE mismatch. These 

cause the fracture in the solder joints to propagate until complete discontinuity.  

However, based on the discontinuities in the solder joints during the TC test, the shape 

and the width of the ROI exhibits phase segregation, which certainly reduces the joint 

geometry. This phenomenon is due to the concentration of stress at the centre of the joints. 

Thereby, the spatial shape of the particular region is considered as an important criterion 

for classification in this study.  
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Subsequently, since the solder joints under TC have no fixed shape, their features 

indicating the bonding quality such as intensity and area of the ROI’s should be  extracted 

and considered as the basis of the next feature classification process. Therefore, in order 

to achieve better accurate CDF curve of crack detection during this performance study, 

the extracted ROI’s of the solder joints from those images above were further processed 

to determine the geometrical and time domain features of those joints.  

Please note, for the segmentation images on 1.6mm PCB please refer to the appendices 

3 in the CD at the back of the hard copy of the thesis.  

6.3.1 Implementation of Watershed Based Image Segmentation Method in AAP 

The aim of this section is to implement the watershed segmentation algorithm, on the 

acquired solder joints images. These type of techniques have been implemented in 

MATLAB to generate the segmentation output of those images.  

These techniques were used for solving the image segmentation problem. Digabel and 

Lantuéjoul initially proposed this type of technique. However, Beucher and Lantuéjoul 

(1979) later expanded this technique to a more broad structure. Meyer et al, (1993) 

demonstrated in their research how the watershed transformation techniques could be 

applied to greyscale images. This makes an image easier to analyse in the image 

processing analysis. However, in this type of segmentation, which is the process of 

dividing images into regions according to their characteristics, the images have been 

scanned from the top to the right, to provide a complementary approach to the 

segmentation of objects. During this process, a unique label is given to each region 

detected by regional minima.  

The watershed segmentation is always used to search for regions of high intensity 

gradients in an image (Salman et al, 2003). The techniques have mainly two classes. The 

first class is flooding based water algorithm, while the second class contains the rain 

falling water algorithms. The work of Pierre Soille and Luc M. Vincent, (1991), stresses 

the need for improved understanding as stated in other literature, which involves 

segmenting greyscale images using flooding simulations. 

By considering the sample image as a topographic surface, which could be ed peaks and 

valleys, respectively in topographical terms (Thouray, 2014), the grayscale images of the 
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test samples were treated as a 3D array. The first and second ordinates represent the 

pixel’s position, and the third ordinate represents the change in thermal cycling of the 

ROI. Figure 6-9 below describe the watershed segmentation of the joints in Figure 4-10 

.These algorithms are based on sorting out pixels in increasing orders of their grey values 

around the ROI, followed by the flooding step consisting of a fast breath-first scanning 

of all pixels in order of their grey levels. 

                       

 

 

Figure 6-9: Watershed Segmented images of solder joint on U46 flip chip of 0.8mm 

board 

Watershed segmentation in Figure 6-9 and 6-10 is depicted by interpreting the intensity 

of the scanned AMI image as a landscape. This segmentation process deals with and help 

to differentiate the propagation of the intensity in the ROI. As the thermal cycle increases, 

the pattern of the intensity distribution of the watershed graph changes. 



120 

 

 

 

Figure 6-10: Segmented image of ROI in solder joint number 9 of 1.6mm board by 

watershed technique 

This type of technique has also provided a good match to differentiate and analyse the 

acquired solder joint images of 0.8mm and 1.6mm HASL boards. Furthermore, the merit 

of using this kind of method is that it enables us to extract the ROI’s and analyse them, 

The segmentation results show that the proposed approach can monitor and estimate the 

increase in the intensity of the region of interest of solder joints on area array packaging. 

With several experimental studies in this research work, it was concluded that the high 

intensity in the area of ROI’s of the joint images, could describe the solder joint failure 

rates.  

 Results from Feature Extraction on the reliability study of solder 

joints 

In this section, the next phase of using feature extraction is to be able to analyse and 

detect any solder joints’ delamination encountered during the TC test, which could affect 

the performance of the board during mission life. 

From previous research as mentioned earlier, it has been noted that the physics of failure 

reliability method alone does not provide adequate failure data information needed on the 

AAP (Adithya Thaduri, 2012). Thus, using other techniques in assessing the performance 
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of solder joints could also contribute to its reliability. Some of this includes the through-

life monitoring of the solder joints. Hence, using image feature extraction to extract 

distinctive characteristics of those solder joints after the inspection could give crucial 

information on the fatigue degradation. A feature in this case is termed a data 

representation that describes the structure of an image, which is represented by area, 

shape, intensity level, histograms etc.  

Nevertheless, applying feature extraction on those solder joints will adequately improve 

the effectiveness of the reliability prediction on the performance of those joints. Thus, in 

order to improve the processing techniques, this section examines how a new feature 

extraction technique was demonstrated, designed and implemented to measure the 

properties of the solder joints to achieve a better performance analysis.  

Thus far, the preprocessing solder joints data acquired after the image segmentation 

process, describe that there may still be many solder joints images that appear as 

delamination or crack. In order to differentiate between the healthy joints and fractured 

joints, feature extraction methods become the major problem to be solved. Thus, using 

some feature extraction methods like geometrical and time domain features, the reliability 

and performance analysis of those solder joints can be studied and the graphical analysis 

results can be generated. 

The selected geometrical feature extraction method is proposed to perceive the 

differences between the area and form factor of both the healthy joint and fractured joints. 

Likewise, the time domain feature extraction method is also proposed by using standard 

deviation as a criterion for describing and analysing the degree of irregularity of an ROI’s 

shape during various TC tests. The sections below elaborate more on the features 

extraction which have been used. 

  Geometrical Features Extraction 

Images could be represented by various forms, but robust representation must maintain 

the features that describe the images and enable further analysis and decision-making 

(Faraq, 2014). As the solder joints images may not have a specific geometric description 

during the validation test, the image features in the acquired AMI images may not be easy 

to specify. Thus far, physical observations after reviewing the variations observed in 
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those solder joints images, showed that the image data sets should be analysed to generate 

linear crack growth rates at each thermal cycling test using geometrical features. 

Meanwhile, it is paramount to investigate the area of the crack length in the ROI in the 

first place to find a primary expression for the fatigue degradation rate in the joints. 

Geometrical features extraction in this stage provide critical information about shape and 

other features of the acquired images like the root cause time analysis. By implementing 

this feature extraction methodology and in order to find specific features, the complete 

image processing is done by using MATLAB.  

From the previous work carried out by Braden, (2012), it was reported that those joints 

are spherical and the UBM is circular in shape, it is reasonable to simplify the crack plane 

surface to a circle, but ROI’s in those solder joints are not perfectly round in shape. 

Thereby to find the level of defect in those images we need to find and calculate the area 

of the ROI’s. 

 

  Calculation of an area in the solder joints images 

As describe in chapter 3 earlier, each flip chips consists of 109 solder joints. The solder 

joints are at different locations on the flip chips of the test samples and they all behaved 

differently during the validation test, thus depicting various characteristics in the 

graphical results as show in Figure 6-10. From the validation test conducted in this 

performance study, it is noted that the thermal strain on those solder joints was related to 

the coefficient thermal expansion (CTE) which is mainly dependent on the distance of 

the solder joints to neutral point by using the Equation 6-11 (Clech et al., 2009).  This is 

because of the shear and strain forces applied on solder joints during the thermal cycling 

test. Thus, taking the position of solder joints on the flip chips and their relationship to 

the neutral point as a factor and important parameter to consider when determining the 

cycle to failure during the performance test, eight solder joints were selected and divided 

into various group for further analysis.  

                                                

        𝐶 = 𝐴1 .
1

𝐿∆𝛼  
 .

1

ℎ𝑚  . (
𝐴

𝐾
)

1+𝑚
                                          Eq. 6.11 
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Where: C is the coefficient calculated from the component assembly, h is the stand-off 

height, K is the assembly stiffness, A is defined as solder joint area, ∆𝛼 is the board to 

component coefficient thermal expansion mismatch, L is the largest distance to neutral 

point and A1 is defined as the solder-dependent creep constants. From the equation 6-11 

above, it is shown that the crack area of the solder joints on those packages is one of the 

paramount factors to estimate the CTE. 

The selected solder joints in Figure 6-1 are eight in number and divide into three groups 

namely, Joint 29, 9 and 64 is one group, which are located at the middle of the flip chip 

assembly and is almost symmetrical to the neutral points. Joints 95 and 107 are grouped 

together since they are the single joints in the centre of the flip chip and symmetrical to 

the neutral point. The third group included in this performance study are 17, 44, and 74 

since they are symmetrical to the neutral point and have very good positioning (located 

at the middle) on the flip chips.  

 

Furthermore, the ability to measure the area of the ROI’s, which are considered the grey 

region in those solder joint images as shown in Figure 5-10 , is an important feature for 

evaluating the levels of delamination or cracks in solder joints. The extracted area 

measurement of the solder joints on different test samples will be used alongside the form 

factor to provide spatial information of the crack initiation and crack propagation to 

failure.   

To start the Feature extraction process, firstly, the standard of judging whether a 

particular solder joints belongs to healthy, partial fractured or fractured joints in this 

research work should be determined. To my knowledge concerning the through-life 

monitoring of solder joint under TC test, the solder joints defect area is made through 

assumptions as there is no efficient method to actually  define and measure the crack 

initiation and propagation time, in relation to the study carried out by Yang, (2012). 

Therefore, in order to verify the fatigue degradation on the solder joints under the flip 

chips of two different test samples of 0.8mm and 1.6mm HASL board, the following 
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steps apply: (1) the extracted solder joint crack area increases significantly as the TC 

increases; (2) the form factor is less than 0.5; (3) has a low standard deviation. 

However, the lifetime of the selected solder joints are determined by how the crack 

propagates as a result of cracking mechanisms. In this case, fractured mechanics-based 

models play an important role in characterizing the solder joints’ behaviour and can lead 

to the formulation of the reliability prediction of those joints. These mechanics fatigue 

models are based on the principle of defects existing in any solder joint and having the 

ability to form a nucleation site. From this, a crack may propagate through the solder 

joints area during the application of an applied stress, in this case thermal cycling.  

It is of note that the solder joints’ life predictions under thermal cycling tests can therefore 

be derived from characterising crack propagation behaviour through stressed materials as 

a function of time geometry and environmental conditions as suggested by Liu (Liu, 

2001). Thus, the propagation of the crack and growth rate through any stressed material 

is a function of time, interconnect geometry and the applied environmental conditions. A 

basic velocity equation cited by Liu, (2001) is given in equation 6.12 

                  
𝑑𝑎

𝑑𝑡
= 𝐵(𝑌𝜎√𝜋𝑎 )𝑛                                                              Eq.6.12 

                                                                

  In this case a is the crack length, a is the applied stress, Y is an interconnect geometry 

parameter, B and n are empirical constants which are thermally dependent. 

The rate of cracking can be correlated with the ATC parameters as stated in the literature 

by the Paris-Erdogan equation. Hence, based on the graphical results in Figure 6-10, the 

crack initiation time, crack propagation time and failed time of the selected solder joints 

on those flip chips relate to the crack length propagation per cycle and were estimated 

using Paris Law in Equation 6.13 (Branco et al., 2008), which actually measures the crack 

propagation as a function of thermal stress.  

                                               

                                          
𝑑𝑎

𝑑𝑁
= 𝐶∆𝑘𝑚                                        Eq. 6.13 
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Where ∆K is the range of the stress intensity factor, and C and m constants that depend 

on the stress ratio and temperature. According to Branco et al., (2008), it has been found  

that the stress intensity ratio can be defined as in equation 6.14.  

                                 R = 
𝐾 𝑚𝑖𝑛

𝐾 𝑚𝑎𝑥
                                                                  Eq.6.14             

 It is noted that the failure in those solder joints during thermal cycling tests always begins 

at one of these high stress points at the corner joints  as illustrated from the image which 

shows the preferred stress locations on those joints in Figure 4-10.  For example, consider 

a flaw with increases in the intensity of the solder joints in Figure 4-10 that grows with 

ATC time.  This indicates that once a defect or crack is formed due to the fracture 

mechanism, the applied stress on the solder joints on those packages due to thermal 

cycling acts as a driving force to propagate the crack in those joints until a catastrophic 

failure occurs. 

Based on this mechanism of crack nucleation, the solder joints named in Figure 6-1 above 

were used as an example throughout the solder joints’ reliability studies respectively. 

From Figure 6-11, it is shown clearly that the area of the fractured solder joints rapidly 

increases compared to the healthy joints. It is noted that the area of the ROI increased via 

a rise in the thermal cycling due to the presence of a crack and completely failed on the 

flip chip by joint separation or when the joint reaches a particular thermal cycle. However, 

given the failure criterion, the thermal fatigue life of the solder joint subjected to stress 

from the first set of the results in Figure 6-11, was predicted using the equation 6-13. 

Hence, based on the analyzed results from Figure 6-13, that identified different types of 

joints, statistical analysis was also done in the depicted results on area of the joints to 

observe the statistical behavior with increase in thermal cycling. 

 This indicates that the solder joint in Figure 6-11 begins to fail on U23 flip chip of 0.8mm 

HASL board for joint 9 around 60 cycles,  joint 29 around 70 cycle while for joints 64 

around 56 cycles and then fails completely at 200 Thermal cycling. It has been observed 

that crack initiation and propagation time are about 65% and 35% in joint number 9, 

likewise 40% to 60 % in joint number 29 and finally, 29% to 61% in joint number 64 of 

the total fatigue lifetime, respectively. 
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Nevertheless, the plot of a fractured solder joint in Figure 6-11 generated a sharp jump 

when cracks are present compare to the healthy joints due to the present of defects. Which 

indicates that the higher the increase rate in the crack area, the higher the failure rate, 

since a lower contact area is left during the TC test and due to the crack area propagation 

phase. 

 

 

Figure 6-11: Area for healthy, partial fractured and fractured solder joints over 

number of thermal cycles of U23 flip chip on  0.8mm board for Joint number 29, 9 

and 64 

 

Furthermore, the resulting graphs in Figure 6-12 to 6-13, also illustrates the failure modes 

in the extracted area of different types of joints on the flip chip at every thermal cycle of 

0.8mm substrate thickness board. However, individual graph analysis was also drawn to 

make some conclusion about the solder joints’ performance. Thus, the selected fractured 

joints in Figure 6-12 have different area value due to the position of each joint on the flip 

chips, which makes the crack area of those joints increase and proportionally to increase 

in thermal cycling.  The generation of failure in solder joint based on fractured 
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mechanisms in Figure 6-12 to 6-13 was divided into various stages, which are the crack 

initiation, crack propagation and the failed using Equation 6.13, which could help analyse 

and provide certain parameters affecting the joints.  The second set of results in Figure 6-

12, depicted two solder joints’ graphical results. The two solder joints are at different 

locations on the flip chips. Thus, from the results it is of note that there is a highly 

significant difference in the behaviour of the solder joints under thermal cycling tests. 

Based on the failure criterion, cracks begins to initiate in Figure 6-12 around 91 cycles in 

joint number 95, while they begin to initiate in joint 107 at 70 thermal cycling. It is 

noteworthy that the total life of solder joints on the flip chips on both test samples at 

different locations are not the same. The average total fatigue life of those solder joints is 

about 200 cycles, which is the total number of thermal cycling tests that the flip chip 

experiences before failure. From the results depicted in Figure 6-12 , the major difference 

between the thermal fatigue behaviours of those selected solder joints is the ratio in the 

crack area propagation to the overall fatigue life. The averages of the crack area for crack 

initiation and propagation times on 0.8mm board thickness of non-underfilled solder 

joints are about 40% and 60% in joint number 95, likewise 60% to 40 % in joint number 

107 of the total fatigue lifetime, respectively. 
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Figure 6-12: Area for healthy, partial fractured and fractured solder joints over 

number of thermal cycles of U23 flip chip on 0.8mm board for Joint number 95 and 

107 

 

The third set of results in Figure 6-13, depicted three solder joints graphical results. The 

two solder joints are at different locations on the flip chips of 0.8mm board. Thus, the 

crack area in Figure 6-13 also indicates that there is a large crack area in joint number 44, 

but lower crack area in the 17 joint. The total average of the fatigue life of those solder 

joints without under fill is 200 cycles also. It is of note that there is much difference in 

the area size of those joints, once the area increases to a certain point as the flip chips 

failed. However, it is depicted from the results that joint area propagation time is more 

than the initiation time.  Hence, the results based on the fatigue life of those solder joints 

can also be evaluated using the crack area size. It is noted that when the cracks in the 

solder joints grow to a critical size then fractured occur. Based on the failure criterion in 

equation 6-8, the initiation time and the propagation time of those three selected solder 

joints are about 35% to 65% in joint number 17, 60% and 40% in joint number 44, finally 

50% to 50 % in joint number 74 of the total fatigue life of those joints. Based on the 
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graphical results depicted in Figure 6-12 to 6-13, the calculation of the area of the solder 

joints can be used to verify the fatigue degradation of the solder joints under thermal 

cycling tests. 

 

 

Figure 6-13: Area for healthy, partial fractured and fractured solder joints over 

number of thermal cycles of U23 flip chip on  0.8mm board for Joint numbers 17, 

44 and 74. 

 

 

  Results of solder joint area in 1.6mm HASL Board 

In the reliability evaluation, the temperature cycling analysis on Board 10 with 1.6mm 

substrate thickness was used to study the performance of solder joints under thermal 

cycling tests. The data was collected by performing the feature extraction technique on 

the same joints used in 0.8mm board and plotting the crack area in an intuitive meaningful 

way, as shown in Figure 6-14 to Figure 6-15. Hence, given a failure criterion as illustrated 
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in equation 6-8, the thermal fatigue life of the solder joints subjected to thermal stress can 

be predicted from the first set of results in Figure 6-14 using the fracture mechanisms.  

The graphical results show that the area  begins to increase dramatically  in joint number 

64 around 70 thermal cycles, while in joint number 9 around 105 cycles. However, at 125 

cycles, joint number 29 begins to increase in crack area. This also indicates that the crack 

initiation time for 1.6mm is quite long compare to 0.8mm board. For comparison 

purposes, the total average of the fatigue life of those solder joints without under fill is 

200 cycles for the selected joint of U23 flip chip on 1.6mm board. Furthermore, it is also 

noted from the validation test that it took so long for the 1.6mm board to fail. Thus, as 

shown from the results from 0.8mm and 1.6mm, the joint number 64 is still the fractured 

joints on both boards due to the higher stress displacement around the location of the 

joint. Thus, the average increases in area of those selected joints based on initiation and 

propagation are about 65% and 35% in joint number 29, 40% and 60 % in joints number 

64, finally 55% and 45% in joint number 9 of the total average of the lifetime respectively. 

The figure 6-14 illustrates the results for board number 10 ten U23 flip chip 
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Figure 6-14: Area for healthy, partial fractured and fractured solder joints over 

number of thermal cycles of U23 flip chip on 1.6mm board for Joint number 29, 9 

and 64. 

The second set of this extraction analysis has two solder joints at different locations on 

the flip chip. Considering the solder joints’ location and their distance from the neutral 

point, joint 95 and 107 are in one group in Figure 6-15. It is of note that the area begins 

to increase as the thermal cycling increases. Likewise, the propagation rate on both 

selected joints are almost at the same rate. However, the average increase in area of those 

selected joints based on initiation and propagation are about 45% and 55% in joint 

number   95 and 60% to 40 % in joint number 107 of the total average of their lifetime 

respectively. 
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Figure 6-15: Area for healthy, partial fractured and fractured solder joints over 

number of thermal cycles of U23 flip chip on 1.6mm board for Joint number 95 

and 107. 

The third set on 1.6mm board compute three solder joint area analysis. Figure 6-16, shows 

the crack area of the number 17 , 44 and 74 in 1.6mm board, from the graphical results, 

as discussed earlier that increase in the area is due to crack formation or growth in those 

solder joints. From this we can summarise that the crack initiates at 84 thermal cycles for 

joint 74, while in joint number 44 the crack initiates around that 98 thermal cycles and 

also in joint number 17 the crack initiates at 119 cycles. However, the average increase 

in area of those selected joints based on initiation and propagation based on the failure 

mechanisms are about 70% and 30% in joint number 17,   55% to 45 % in joint number 

44 and lastly, 40% and 60% in joint number 74 of the total average of their lifetime 

respectively. 
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Figure 6-16: Area for healthy, partial fractured and fractured solder joints over 

number of thermal cycles of U23 flip chip on 1.6mm board for Joint number 17, 44 

and 74. 

 

  Results of solder joints area on 0.8mm Board BD09 U46 Flip chip.  

The U46 flip chip on 0.8mm board was the first chip that came off during the study of 

the performance of solder joint under TC test. It can be inferred that the rate of change in 

the crack area is quite different from others. Thus, from Figure 6-17 to 6-18, it is observed 

that the crack begins to initiate in joints number 29, 9 and 64 as thermal cycling increases. 

However, the acquired acoustic images confirm that the rate of increase in intensity of 

those selected joints is dramatically high. However, at 88 thermal cycles the flip chip 

came off on the test sample during the validation test. Thus, the total average of the 

fatigue life of those solder joints without under fill is 88 cycles for this particular flip 

chip. 
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 Furthermore, the graphical results during the performance analysis confirms that,  the 

average increase in area of those selected joints based on initiation and propagation,  are 

about 35% and 65% in joint number  9. Thus, 55% to 45 % in joint number 44 and lastly, 

42% and 58% in joint number 64 and 40% to 60% in joints number 29, of the total average 

of their lifetime respectively. 

 

Figure 6-17: Area for healthy, partial fractured and fractured solder joints over 

number of thermal cycles for U46 flip chip of 0.8mm board for Joint number 29, 9 

and 64. 

Figure 6-18 shows the typical crack area increases of those selected non-underfilled 

solder joints during thermal cycling tests. The average fatigue life of the selected flip chip 

is 88 thermal cycles.   
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Figure 6-18: Area for healthy, partial fractured and fractured solder joints over 

number of thermal cycles of U46 flip chip on 0.8mm board for Joint number 17, 44 

and 74. 

For comparison of results, the Figure 6-19 shows the area and the temperature-cycling 

curve for the selected solder joints 95 and 107. However, it is of note that the fatigue life 

of those joints during the TC test tends towards the same direction and almost similar, 

due to the locations of those joints on the flip chips. However, the average life of those 

solder joints is estimated to be 88 cycles. The increase and propagation in area of joint 

number 95 are 60% to 40 %, while joint number 107 are 35% to 65% of the average of 

the total lifetime of the flip chip respectively.   
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Figure 6-19: Area for healthy, partial fractured and fractured solder joints over 

number of thermal cycles of U46 flip chip on 0.8mm board for Joint number 95 and 

107 

 

6.4 Crack Area Summary 

For solder joints in the area array packaging, differences in the coefficients of thermal 

expansion of the different materials in the electronic assembly and a changing thermal 

environment are known to be major factors for inducing strains. Defects or cracks form 

and propagate in those solder joints due to thermal fatigue as illustrated in this chapter, 

and this propagation rate is reported to be the main failure mechanism that affects solder 

joints’ life. In this research study, the results indicate that continuous increase in the area 

values of those solder joints under thermal cycling tests demonstrates a decrease in the 

strength and performance of those joints, which led to the discontinuity of the flip chips 

on the test samples. Thus, from the graphical results, a failure crack area value is specific 

to each joint. Every joint having a different failure characteristic as illustrated in Figure 

6-14 and Figure 6-21, when comparing the characteristics of the selected joint in Figure 

6-1. A linear regression analysis was performed on all the area graphs. It is observed that 
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a strong correlation exists (R2=0.98 to 0.99) in all the area graphs on 0.8mm and 1.6mm 

boards. It is noteworthy that some solder joints experience variations in crack area size 

as a results of the flip chip position on the AAP, interconnect geometry and 

manufacturing assembly. This is most noticeable for example on the corner joints. 

However, other factors such as the PCB thickness and the component population on the 

PCB could also influence the crack area size response of the joint under thermal cycling 

test. Comparing aging conditions, the differences in the propagation of % crack area for 

0.8mm and 1.6mm HASL packages were statistically different. 

  Crack Evaluation using Form Factor in the Solder joints Images 

In this evaluation study of solder joint, the purpose of this analysis is to demonstrate how 

the variation in region of interest shapes, rather than only the diameter, can affect the 

solder joints’ life under thermal cycling tests. It was observed that the deformation of the 

region of interest (ROI) shape of the aged SnPb (Sn=52.9%, Pb=45.9%) joints in Figure 

6-7 on both test samples of 0.8mm and 1.6mm were rather round. In order to carry out 

this evaluation study on how the ROI affects the solder joints’ life, experimental results 

on the extracted region of interest have been analysed by using a new geometrical (form 

factor) feature extraction method, with the goal of improving the current understanding 

regarding the subject area and to determine the defect form factor value of each solder 

joints in the acquired ultrasound images. However, the analysis of the results has shown 

that the reliability of solder joints could be affected by variations in the solder joints’ 

shapes during temperature cycling tests. It is of note that the bump is spherical and the 

under bump metallization for the flip chip packages is circular, it is rational to assume 

that the defect plane surface to a circle, from which the form factor of the ROI was 

calculated by using the Equation 6-7 in MATLAB software from Math works. Studies on 

the form factor feature extraction method has been successfully implemented in medicine 

to differentiate between a normal cell and a sickle cell in Figure 6-20. The form factor is 

computed using the equation 6-15 to determine whether the cell is sickle or not (Alotaibi, 

2016). According to Alotaibi, the method of using a form factor to differentiate a cell is 

90 percent more accurate than the existing method in medicines. 
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           Figure 6-20: (a) and (b) Shows different shapes of cells (Alotaibi, 2016) 

In other to account for the experimental data results, the acquired image data were 

correlated by using this kind of feature extraction method which characterizes and 

differentiates the shapes of the regions of interest on the solder joints images. The failure 

distribution pattern of the form factor methods is an important feature for evaluating the 

levels of deformity in the shape of those ROI’s, since the ROI’s are not perfectly round 

in shape under thermal cycling test. Nevertheless, this can be mainly understood when 

carefully considering the shape of the region of interest of the solder joints during thermal 

cycling in Figure 6-7 and 6-8.  

Thus far, from the literature review in chapter 2, it is common knowledge in literature 

that in area array packaging, the coefficient thermal expansion difference causes the 

materials on the circuit board assembly to expand and contract at different rates, and when 

the thermal stress exceeds the break point of the solder joint, fatigue failure occurs, the 

fatigue could actually cause the shape of those ROI joints to deform. As stated in section 

3, solder joint images were acquired during different thermal cycling test using an AMI 

machine.  Hence, the shape geometry of the ROI in the acquired solder joints images can 

be determined by form factor method, which assumes that the ROI of solder joints are 

round without considering the effect of TC on it.  The value of the form factor is 

calculated from the ROI’s based on the deformations caused by these cycling test on the 

images that lead to various stress state in the joints.  From the analysis results in Figure 

6-23, conducting this type of feature extraction on solder joints has helped to observe the 

phenomenon that irregularity in the ROI’s is mainly linked to solder joints as the TC 

increases.  

The form factor operation is expressed by using Equation 6-7. Thus, this operation 

defines that the ROI have different degrees of roundness because they appear 

The image originally presented in Figure 6-20 cannot be made freely available 

via LJMU E-Theses Collection because of 'copyright'.  The image was 

sourced at Alotaibi, K., 2016. Sickle Blood Cell Detection Based on Image 

Segmentation. 
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heterogeneous in terms of their shapes. It is noteworthy to know that this type of feature 

extraction makes use of two other parameters: i) changes in area and ii) changes in the 

perimeter of a sample to determine the shape of the ROI. According to the equation 6-15, 

for a perfect circle, the form factor value is equal to 1 (one). 

                                                (4π x A)/ (P)2                                                      Eq. 6-15 

Where A is the area and 𝑃 is the perimeter of the region. 

Conversely, as the shape of the ROI becomes less round, the circularity should decrease 

and tends to approach zero. Based on the graphical observation from Figure 6-21 to 6-

23, it is of note that as the cyclic temperature transition induces a thermo-mechanical 

stress to each solder joint, it was postulated in this research study that the differences in 

the ROI are attributed to the presence of defects in the joints. If the ROI shape is convex 

as illustrated in Figure 6-7, this could lead to a significant crack area as graphically 

depicted in section 6.4.2, but a proportionally smaller crack area could occur when is it 

in concave form, the graphical results below compare the shapes of the regions of interest 

of solder joints to see if one correlates better with solder joint life under thermal cycling 

tests. 

 



140 

 

 

  Results of form factor of 1.6mm Board, U23 Flip chip   

 

                                                                     (a) 
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(b) 

 

(c ) 

Figure 6-21 : Depicted the form factor of 1.6mm substrate thickness on U23 flip 

chip under different thermal cycling,  with non-underfilled solder joints at 

different locations (a) 29, 9, 64 (b) 95 and 107 and (c) 17,44,74 
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  Results of Factor of 0.8mm Board, U23 Flip chip 

 

(a) 
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(b) 

 

(c ) 

Figure 6-22: Depicted the form factor of 0.8mm substrate thickness on U23 flip 

chip under different thermal cycling,  with non-underfilled solder joints at 

different locations (a) 29, 9, 64 (b) 95 and 107 and (c) 17,44,74 
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6.5.3 Results of Form Factor of BD09 U46 flip chip 

 

(a) 

 

(b) 
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( c ) 

Figure 6-23: Depicted the form factor of 0.8mm substrate thickness on U46 flip 

chip, under different thermal cycling,  with non-underfilled solder joints at 

different locations (a) 29, 9, 64 (b) 95 and 107 and (c) 17,44,74 

 

  Findings 

The shape formation of the solder joints has been analyzed from a statistical points view 

point, and the effects of the shape on the fatigue have been investigated. The findings 

from this section are based on using form factor as depicted in Figure 6-21 to 6-23. It is 

observed that as the thermal cycling was increasing, the reliability of the package was 

decreasing. Figure 6-21 to 6-23 shows the variation of cycles to failure in relation to ROI 

shapes. This is because as the diameter of the solder joints increases during the thermal 

test, the distance from neutral point increases which leads to more strain in the solder 

joints. For corner joints, defects were initiated at the point with lower form factor which 

are considered to have a convex apex region of interest shape as shown in Figure 6-8, for 

the shape of convex apex, the stress level was comparatively high, because the high stress 
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area concentrates at the interface that are not closer to the neutral point in the centre of 

the flip chip.  In analyzing the form factor effect on the remaining selected joints 9, 29, 

64, 74, 107 and 95 in figure 6-1, it was found that the results in Figure 6-23 clearly denote 

the dependence of the solder joints’ failure data on the extraction method when the region 

of interest shape diverges from spherical under thermal cycling tests. The results 

practically coincided with the segmentation techniques in chapter 5, suggesting that the 

shape of the region of interest is randomly oriented i.e. concave shape. For the solder 

joints shape of concave and tiny concave, the stress level was relatively low, because the 

high stress area  are not located at the interface that are more closer to the neutral point 

of the flip chip. However, based on the analyzed results on form factor, it is of note that 

the region of interest in solder joints’ images is more vulnerable to thermal fatigue. It is 

also found that during the ATC, the deformation of the ROI in all direction increases with 

the decrease in thickness of the PCB board. 

 

  Time Domain Features using standard deviation 

In past years, inspection of certain defects or delamination on electronic boards was done 

through simulations, a method that is term subjective and hardly efficient. However, due 

to the effect of some environmental factors such as thermal expansion, vibration, 

humidity, solder joints suffer from defects in their internal structures. These kinds of 

delamination or defects are referred to as cracks, which could directly affect their 

functionality during usage. Thus, adequate and accurate through-life monitoring 

information about those defects is crucial for their performance.  

Therefore, using the standard deviation (SD) method during the study of the performance 

of solder joints is one of the useful ways to monitor and evaluate their fatigue life. (Pan, 

et al 2011). The standard deviation of the solder joints is an effective criterion for 

describing and measuring the variation of irregularity of a spatial shape of the ROI of the 

solder joints. Thus, the work presented in this section endeavours to use the standard 

deviation feature to evaluate the solder joints’ defects caused during the thermal cycling. 

It is of note that the spatial shape of a particular image is an important criterion for image 

analysis (Yang et al, 2012).  A low standard deviation indicates that the data points tend 
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to be very close to the mean, whereas high standard deviation indicates that the data points 

are spread out over a large range of values (McDonald et al, 2015). 

However, based on the perspective on the segmented results of using visual observation, 

you will have a clear idea that the joints consist of a pattern of irregular shapes during the 

TC test, but you probably would not be able to tell what was happening in the ROI’s of 

those images. Thus, one paramount characteristic of those test images is how much 

variation there is between them. In this performance study, a standard deviation in terms 

of feature extraction is presented to measure and show how much variation or dispersion 

of the component is in each pixel.  This method has been defined as the square root of 

the fraction of the summation of mean deviations of a set of values. Thus, a standard 

deviation filter has been used to calculate the standard deviation, which enables it to 

assign this value to the ROI in the image which helps in detection of irrelevant or irregular 

objects in an image.   

Mathematically this is represented in the form of an equation 6-16 as follows,  

F( x, y) = √
1

𝑚𝑛−1
∑ (𝑔(𝑟, 𝑐) −

1

𝑚𝑛−1
∑ 𝑔(𝑟, 𝑐)(𝑟,𝑐) )(𝑟,𝑐)𝜖𝑤 2 

Where f(x, y) is the restored image, ‘g’ is the normal image, ‘r’ and ‘c’ are the row amd 

column coordinates respectively and ‘within a window ‘W’ of size ‘m×n’ where the 

operation takes place (Vijay Kumar et al 2012). However, using SD values and the 

intensity values obtained in this work, the results to obtain the deformation in solder joints 

becomes much easier. Standard deviation could be considered as an important benchmark 

to identify the deviation of each solder joint from another. The correlation of the results 

is then compared with the TC to determine the quality of those selected solder joints. 

From the analysis,  a large SD of the acquired images would simply mean that the sample 

contains images with different variation, which enables us to study the relationship with 

greater precision. Figure 6-26, the graphical results depicted that there are more increases 

in variablity in the healthy solder joints than there are for the defective joints. However, 

based on the observation  from Figure 6-26, that identified different types of joints, 

statistical analysis was done in the depicted results on standard deviation to observe the 

statistical behaviour with an increase in thermal cycling. 
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Analysed results of SD on  BD09 of U46 Flip chps , 0.8mm substrate thickness is depicted 

in Figure 6-26 below.The change in variability in or dispersion of, analysis of this 

particular flips chip during thermal cycling test, is quite different form the others because 

of some  factor that may affect the performance of solder joints on that flip chip, Some 

of the factors are i)  the position of the U46 flip chips on the test sample, ii) the extend of 

thermal expansion coefficeint mismatch on the flip chips during the ATC test, iii) the 

thermal profile range,( Heating and the cooling rate involve in the thermal test, iv) solder 

joints geomtry on the flip chip, v) the level of compliancy of the flip chip assembly.  

 

(a) 



149 

 

 

 

(b) 

Figure 6-26: Variation in standard deviation of joint number a) 29, 9, 64 and b) 17, 

44 and 74 of U46 Flip chip, 0.8mm board at different TC test. 

  Findings 

Using the designed test boards has enabled to carried out an investigation in which the 

standard deviation was used to analyze and study the failure rate of those joints 

.Conceptually, it is important to observe that as the number of cycles are increased the 

solder joint irregularity continues, and the width of the interval decreases, identifying a 

change in variation of standard deviation. The graphical graph of an SD distribution 

approaches an increase in irregularity of the image. In this study, a novel feature 

representation formed with statistics using standard deviation of Gaussian method to 

monitor the performance of solder joint during TC test has been covered and proposed. .  

Accordingly, the standard deviation is calculated for constructing the feature 

representation which greatly helps in analysing the feature data while not leading to heavy 

information losses. In addition, the standard deviation used in this performance study 
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could be described as a descriptive method that helps to indicate the variability in the 

acquired solder joints images on both 0.8mm and 1.6mm test samples. 

 

  Summary 

In this chapter, the ability to accurately detect the anomalies and failures in solder joints 

during environmental exposure is the key factor in assessing the reliability or 

performance of the solder joint. Three failure criteria were compared in solder joints’ 

reliability life estimation under thermal cycling test. These failure criteria include a 

failure criterion based on the area plots, form factor plots, and standard deviation chart. 

Results from this research study shows that those failure criteria have variation in the 

cycles to failure for constant temperature cycling ranges. This is because as the size or 

area of the solder joints increases, the crack length increases and the time for crack 

propagation increases. However, the analysis results from this study revealed that solder 

joints’ stability is sensitive to board thickness. Evidence has shown that the solder joints 

on the 0.8mm HASL board have the lowest levels of reliability. On the other hand, the 

solder joints on 1.6mm HASL have better levels of reliability. This indicates that there is 

a statistically significant difference in reliability life among solder joints for -40 to +85°C 

thermal cycling range data on the flip chip components. However, in this study, constant 

temperature profiles are applied on different circuit board assemblies on the reference 

geometry of the solder joint to study the effects of ramp rate, dwell time and temperature 

range on the region of interest shapes. It is found that the stress level of solder joint during 

the thermal cycle test increases at longer dwell time. This reflects the accumulation of 

creep damage with time on the ROI shapes. 
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 Analysis and Discussion 

The basic aim of this study was to estimate and monitor the failure rates of the reliability 

of solder joints under thermal cycling test using a non-destructive technique (NDT) called 

acoustic micro imaging (AMI). Geometrical feature extraction methods like area and 

form factor were used to study and analyse the failure rate and the effect of substrate 

thickness on the reliability of solder joints. It is of note that these research studies have 

been carried out on two different boards of thicknesses of 0.8 mm HASL and 1.6 mm 

HASL without under fill. It can be observed from chapter 5 that the solder joint life 

decreases as the board thickness decreases. Also, the flip chips components on 1.6mm 

board show better performance, which is because the thicker board absorb less heat, 

hence reducing the stress level of solder joints on the flip chips component. However, in 

this chapter, analysis of variance (ANOVA) was used to analyse solder joint defect on 

the characteristic life of flip chip assemblies. This section includes the analysis for the 

failure detection and failure criteria comparison in previous chapters. 

Analysis of variance also helps to determine the significant factors which affect the 

geometrical reliability life of the solder joints under the flip chips for both test samples 

with the same temperature cycling range. The geometrical feature extraction parameters 

such as the area, the form factor were used in the ANOVA. This is because the variation 

in the area and the form factor signifies the defect occurrence cycles during the validation 

test, which provides a better way to estimate the performance of the solder joint during 

mission life, this is well depicted in chapter 6. 

  Anova Hypothesis in this research study 

The percentage contribution of an individual parameter cannot be determined by the 

simple analysis but can be achieved through ANOVA. This refers to the application of a 

statistical method, which separates the total variability of the responses into contributions 

from each parameter (Rosa, 2018). The percentage contribution of an individual 

parameter is defined as the pure sum of the squared deviation of each factor divided by 

the total sum of the squared deviations. This can be used to evaluate the importance of 

various parameters on the response acquired during the validation test. 
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The ANOVA tested the following hypotheses for the reliability life of 0.8mm and 1.6mm 

HASL board, using the thermal profile of -40 to +85 °C. Hence, to prepare for the 

ANOVA test, the selected solder joints were divided in two groups based on their distance 

to neutral points. The mean of the acquired data was used as reference to get the average 

and the variance. The solder joints (JT) with score less or equal to the mean were put in 

a group and assume be a good joints and the remaining were put in another group.  After 

dividing solder joints into two groups, a two-way ANOVA was conducted to examine 

the difference between the mean of the solder joints under two different PCB thickness. 

A p value of less than .05 was required for significance. The results table shown in 

Appendices C, which can be found in the storage device at the back of this thesis, contains 

the number of components for estimation of the solder joint characteristic life using the 

area and the form factor data. The ANOVA used in this research study depicted whether 

each performance study investigated the individual behaviour of solder joints on the flip 

chip packages whilst considering the hypothesis that reliability of the test sample is 

influenced by placement location on the PCB floor plan layout, PCB substrate thickness, 

and physical constraints placed on the PCB during the validation test. 

Table 7-1 shows that the package construction was a significant factor in the reliability 

of solder joints on U23 flip chips of 0.8mm HASL board. 

Table 7-1: (a) and (b) ANOVA Table for area characteristic life of joint number 95 

and 107 (-40 to 85°C) 

 

                                                      (a) 

 

                                                        (b) 
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Parameters definitions: where N: Number of Samples, SS: Sum of Squares which 

measures the variation from the mean, DF: Degree of Freedom this refer to terms in the 

sum of squares =N-1, MS: Mean Square which is the sum of squares (SS) divided by the 

number of degrees of freedom. F is the variance ratio which equals the mean sum of 

squares (MS) divided by the means square error, and p-value: Probability value which is 

used to determine if the results are statically significant (Minitab, 2014).  

Figure 7-1 shows that PCB thickness has a statistically significant effect on the 

characteristic life of solder joints. Figure 7-1 graphically shows the average and variance 

characteristic life plot for the joint 95 and 107 on U23 flip chip of 0.8mm HASL board. 

From the calculation of the Average, it shows that the area increases more in Joints 107 

more than Joint 95 as the thermal cycling increases. 

From the calculation of the Variance, it shows that the rate of increase in area of Joint 

107 is higher than Joint 95. Nevertheless, the test of significance is performed by 

comparing the calculated F-ratio with the standard F-table.  F-value in table 7-1 is greater 

than the F-critical value for the alpha level selected is 0.005(Minitab, 2014).  Hence, the 

p-value is very low. Therefore, we have evidence that each joint has different significant 

degradation effects and it increases along the joints. The results in Figure 7-1 of the 

analysis also show a significant change in the trend of the failure in solder joints. 

 

 

                                                         (a) 
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                                                                      (b) 

Figure 7-1: Anova analysis of the average and variance of joint number 95 and 107 

on U23 flip chip on 0.8mm board. 

         

Table 7-2 shows the average and variance characteristic life plot for the joint 9, 29 and 

64 on U23 flip chip of 0.8mm HASL board. Which also shows that the PCB thickness 

has a statistical significant effect on the solder joint life at -40 to 85 °C temperature 

cycling range. 

Table 7-2: (a) and (b) ANOVA Tables for area characteristic life of joint number 95 

and 107 (-40 to 85°C) 

 

                                                  (a) 

  

                                                    (b) 
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Figure 7-2 depicted the average and variance characteristic life plot for the joint 29, 9 and 

64 on U23 flip chip of 0.8mm HASL board. From the calculation of the Average, it shows 

a gradual degradation increase from Joints 9, 29 and 64 as the area increases from one 

joint to another. From the calculation of the Variance, it shows that the rate increase in 

area is higher in Joint 64 and lowest in Joint 9. 

 

 

 

 

Figure 7-2: Average and variance of joint number 29,9 and 64 for 0.8mm HASL 

board. 

7.1.1 ANOVA Results: Form Factor Characteristic Life using -40°C to +85 °C  



156 

 

 

Reliability life for different solder joints at the same temperature cycling range was 

examined. At -40 to +85°C temperature cycling range, form factors were significant 

features which differentiate p-values of solder joints respectively. The form factor 

analysis of multiple comparisons shown in Table 7-3 indicates that the characteristic life 

for 0.8 mm HASL board is statistically significantly different from another. That allowed 

us to estimate the influence of PCB thickness and interactions between them on solder 

joint life. 

Table 7-3:  (a) and (b) shows the characteristics life for 0.8mm HASL board for joint 

9, 29 and 64. 

 

                                                        (a) 

 

                                                        (b) 

 

Figure 7-3: Anova average of joint number 29, 9 and 64 for 0.8mm HASL board 

based on form factor. 
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From the calculation of the average in Figure 7-3, shows that the form factor from joints 

9, 29 and 64 is decreasing. It also shows that the rate increase in area is higher in joint 64 

and lowest in joint 9. Hence,  p-value in table 7-3 is very low because the F-value is 

greater than the F-critical value for the alpha level selected is 0.005, therefore, we  have 

evidence that each joint has different degradation effects and affects the shape of the 

joints. 

7.1.2: ANOVA Results for 1.6mm HASL board on U23 flip chip: Area 

Characteristic Life using -40°C to +85 °C thermal profile. 

The area analysis of multiple comparisons shown in Table 14 indicates that the 

characteristic life for 0.8 mm board is statistically significantly different from that for 

1.6mm. In addition, the characteristic life for 1.6mm board is statistically significantly 

longer than that for other pitches. 

Table 7-4: (a) and (b) ANOVA tables for area characteristic life of joint number 95 

and 107 of U23 flip chips -40 to 85°C thermal profile 

 

                                                              (a) 

 

                                                    (b) 

The Anova area analysis plot for U23 flip chip in Figure 7-4 shows that the characteristic 

life for 1.6 mm HASL board is more preferable in terms of reliability compared to 0.8mm 

HASL board. In addition, the characteristic life for 1.6mm board is statistically 

significantly longer than that for other boards. From the calculation of the average, it 

shows that the area is neither increasing nor decreasing in any order for both joints. From 

the calculation of the variance, it shows that the rate of change in area is not dependent 

on the joint positions. 
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                                                                         (a) 

              

Figure 7-4:  (a) and (b) depicted the Anova analysis of the average and variance of 

joint number 95 and 107 on U23 flip chip on 1.6mm board 

  

However, Table 7-5 a and b shows the average and variance characteristic life plot for 

the joint 9, 29 and 64 on U23 flip chip of 1.6mm HASL board. Which also shows that 

the area array package construction has a statisticallly significant effect on the area 

analysis for the -40 to 85 °C temperature cycling range. 
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Table 7-5: (a) and (b) ANOVA tables for area characteristic life of joint number 9, 

29 and 64 of U23 flip chips using -40 to 85°C thermal profile on 1.6mm board. 

 

                                             (a) 

 

                                              (b) 

  

Figure 7-5 shows that the thermal cycling test has a statistically significant effect on the 

characteristic life of solder joints.From the calculation of the average in Figure 7-5(a), it 

shows that the average area of all cycles in joint 64 is higher and lowest in Joint 9. From 

the calculation of the variance in figure 7-5(b), it shows that the rate of change in area is 

dependent on the joint positions throughout the cycles. 

             

                                                                (a) 
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Figure 7-5: Average and variance of joint number 29, 9 and 64 of U23 flip chip of 

1.6mm HASL board. 

 

7.2 ANOVA results using two factor with replication 0.8mm and 1.6mm HASL 

Board 

In this study, ANOVA for solder joints on different test samples was conducted as well. 

The effects of the thermal cycling on solder joint life are summarized in Table 7-6.  Table 

7-6 shows the estimated coefficients of solder joints 95 and 107 and the associated 

standard error on 0.8mm and 1.6mm boards. In order to make the ANOVA analysis valid 

in this study, the square root transformation is necessary. The standard error is used to 

estimate the standard deviation for that term in this study.  A probability for the p-value 

below 5% indicates that term is a significant effect. Based on both the standard error and 

the probability for the p-value, it is intuitive that the board thickness and components 

population on the printed circuit board has significant influence on the fatigue life of 

solder joints, which is consistent with the ANOVA results. 

The ANOVA table 7-6 show that the component size has a statistically significant effect 

on the solder joints’ life under TC test. It shows that the shear stress for SnPb (Sn=52.9%, 

Pb=45.9%) solder joints is higher in thinner board 0.8mm for the same component size 

compared to thicker board 1.6mm. 
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Table 7-6: (a) and (b) ANOVA tables for area characteristic life of joint number 95 

and 107 of U23 flip chips using -40 to 85°C thermal profile on both 0.8mm and 

1.6mm. 

 

  

(a) 

 

(b) 
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Figure 7-6: Graphs showing joint number 95 and 107of U23 flip chip for both 0.8mm 

and 1.6mm HASL board. 

 

 

 

Figure 7-7: Graphs showing joint number 9, 29 and 64 of U23 flip chip for both 

0.8mm and 1.6mm HASL board 
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  Chapter Summary 

The purpose of this study was to examine a statistical approach for feature selection in 

life monitoring of solder joints under thermal cycling tests. Cycles-to-failure for the 

0.8mm and 1.6mm board validation data was determined using Analysis of variance 

(ANOVA). ANOVA was used to see if PCB layout had a statistically significant effect 

on the characteristic life and slope of the flip chip assemblies. The sensitivity of this kind 

of method was then compared with the selected solder joints in chapter 6. Using the mean 

of the acquired data as reference, the selected solder joints was divided into various 

groups to classify and check the statistical significant relationship  exist between the 

solder joint on two  printed circuit boards (PCBs). The ANOVA technique was computed 

using a two-way ANOVA to analyse the acquired data. The ANOVA was significant, the 

effect size was high on those solder joints, allowing to rejecting the null hypothesis, and 

indicating that there is a statistically significant relationship with strong effect size 

between the solder joints on 0.8mm and 1.6mm HASL board. Likewise, the analysis test 

indicated that PCB thickness affects the solder joint interconnect reliability. These results 

support the conclusion that there is a statistically significant and strong relationship 

between solder joints under thermal cycling test and the PCB thickness. 
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   Conclusion 

The achievement of the research aims has enabled the development of a nondestructive 

methodology called acoustic micro imaging to evaluate the reliability of solder joints 

under thermal cycling test. The investigation of the solder joints on 0.8mm and 1.6mm 

HASL circuit board assemblies was considered to be the first time the Gen6™ C-Mode 

Scanning Acoustic Microscope was used to monitor and analyze the reliability of solder 

joints under thermal cycling tests.  The research developed a concept in which the 

validation experimental work and the feature extraction method, characterized the 

reliability study of solder joints using the geometrical and time domain features extraction 

method. This allowed repeatability and reproducibility of study methods of analysing 

defect in solder joints of area array packaging. In this research, auto-comparison 

segmentation analysis method was designed and developed to effectively segment, and 

identify solder joint defects on the packages. 

The main contribution made in this research study are as follows: 

1) An attempt was made for the first time to bring in medical image analysis method 

that was used to detect sickle blood cells in blood samples. This method was adopted 

in this research, to present a novel method that determine and evaluate the variations 

in the region of interest shapes in reliability study of solder joints under thermal 

cycling test. Based on the observations, it is noteworthy to know that the variations 

in size of the region of interest may have a significant impact on the reliability of 

solder joints. 

2) A new relationship between the solder joints was designed, through which the size of 

area of solder joints under thermal cycling test can be measured. However, the results 

has a good relationship between the acquired image data and solder joint area size 

under ATC test, which has not been fully studied before in AMI inspection. 

3)  A new image segmentation and feature extraction method was designed and 

implemented in this research work to study the performance of solder joints under 

thermal cycling test. This method was used to extract image features such as mean 

intensity, the AMI cycle to failure of solder joints, the structural similarity model, 

histogram differences of the region of interest. Hence, through data analysis the 3D 

segmentation of solder joints was designed. 
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4) In this research study, a new less aggressive profile of -40ºC to +85ºC was used, this 

successfully led to a slower failure process, which enabled finer tracking of crack 

propagation in solder joints under thermal cycling test. However, this also facilitated 

the development of an image feature based joint fatigue degradation model for 

through-life monitoring of crack initiation and propagation. 

5)  The successful development of the non-destructive methodology significantly 

improved the flexibility and robustness of the inspection system to monitor solder 

joints under environmental exposure. A comprehensive comparison between solder 

joints on different substrate thickness evaluation methods was presented in this 

research, in which the reliability of solder joints was assessed using 0.8mm and 

1.6mm failure criterion. It is depicted that the substrate thickness had a statistically 

significant effect on the area and form factor characteristic life of solder joints at the 

same thermal cycling range, with 0.8mm HASL packages having the shortest 

reliability characteristic life. The test results obtained in chapter 5 and 6 from this 

research study could provide some guidance on how to estimate the effect of TC on 

solder joints.  

6) The research has successfully analysed the defects in solder joints by using 

geometrical feature extraction like area and form factor. This has demonstrated better 

stability in measuring the solder joints’ defects, and how the crack propagated in 

solder joints under thermal cycling tests. Further analysis on those solder joints was 

done using analysis of variance (ANOVA) techniques that demonstrate how the PCB 

thickness affects the failure rate of solder joints. This illustrated that the defects on 

solder joints during the thermal cycling test are related to component populations on 

the printed circuit board.  
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  Recommendation for Future Work  

In order to improve the current monitoring inspection system and expand the application 

of ATC to monitor the performance of solder joint, there is tremendous scope for pursuing 

further research study. Some of the potential directions for future research are presented 

in this section 

1) Leaded solders in AAP have been the most used materials because of their 

great properties for interconnecting the flip chips component, but due to 

environmental legislation, lead free solders have been developed. The lead 

free solders are an initiative to help the environment. However, with respect 

to conducting performance study analysis on AAP, further study must be 

carried out on lead free test samples of the same flip chip components to 

emphasise the effect of using the sample thermal profile and the same 

parameters used for the validation inspection. 

 

2) The use of different parameters both on validation test and inspection 

techniques in this performance study could have an effect on the analysis. In 

respect to this, further analysis should be conducted to understand the effect 

of different parameters on the test samples. For example to conduct an 

inspection on the solder joints at different AMI resolution, including 3D 

analysis from VRM data, to compute the sensitivity to performance changes. 

 

3) Expansion of application scope, thus this thesis has investigated solder 

performance under thermal cycling test, which is the most common source 

from testing fatigue on solder joints. Hence, combining vibration and thermal 

cycling tests could give more precise results for products working under those 

environments, since, dynamic deflections of materials on area array 

packaging caused by vibration can result in huge problems and malfunctions 

of solder joints on the flip chips.  
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Appendices 1 

 Appendix 1:ATC preliminary test data for  both  0.8mm and 1.6mm………………USB 

drive attached to the inside back cover page 

Appendix 2 AMI preliminary scans on both test samples ...………………………USB 

drive attached to the inside back cover page 

Appendix 3: A full data set of the AMI, X-ray images undertaken in this performance 

study. Test boards configurations and assembly information are also contained in this 

USB. …………………….……………USB drive attached to the inside back cover page 

 Appendix 4: MATLAB programs used in the image processing, feature 

extraction………………………………USB drive attached to the inside back cover page 

Appendix 5: Graphical Results of  all ATC test during the study ...………………USB 

drive attached to the inside back cover page 
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Appendices 2: Publications 

 

1) Initial Investigations into Through-Life Monitoring of Solder 

Joints 

Adeniyi, O.A, Braden, D.R., Zhang, G.M. and Harvey, D.M. 2016 

             (Best Oral Presentation Award) 

             Liverpool John Moores University, Faculty Research Week, FET PGR 

Abstract: In this study, solder joints were monitored using ultrasonic transducers. 

It is well documented that solder interconnections are the weakest link in terms 

of a circuit board assemblies (CBA) reliability. This is due in part to the 

coefficient of thermal expansion mismatch in materials used in the construction 

of components found on CBA when exposed to thermal cyclic environmental 

conditions, which in turn lead to fatigue failures. This paper presents a method to 

monitor solder joints in area array packaging using non-destructive techniques. 

Test boards with organic substrate thickness of 0.8mm and 1.6mm, containing six 

flip-chips and eight BGA chips were been subjected to an accelerated thermal 

cycling test (ATC) that ramps between 125°C and -40°C. Test boards were been 

monitored at regular intervals by Acoustic Micro Imaging. Experimental work to 

show difference image qualities for transducers with different frequencies were 

been performed. 

2) Water Temperature Influences on Ultrasound Inspection of Solder Joints 

Adeniyi, O.A, Braden, D.R., Zhang, G.M. and Harvey, D.M. 2017 

            Liverpool John Moores University, Faculty Research Week, FET PGR 

   

 Abstract: In this study, solder joints were been monitored using Acoustic Micro 

Imaging (AMI) for inspecting effects of a change in a particular parameter on the 

solder joints. This paper presents a method to monitor solder joints using water 

temperature as the major parameter. The test boards with organic substrate 

thickness of 0.8mm and 1.6mm, containing 6 flip-chip packages and 8 BGA chips 
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were subjected to Accelerated Thermal Cycling Test (ATC) with temperatures 

varying between -40 and 125°C. Test boards were been taken out at 4cycles and 

monitored at regular spaced intervals with AMI. Experiments to show the 

difference in image qualities for 230MHz transducers were also been performed 

 

3) Non-destructive Evaluation and Life Monitoring of Solder Joints in Area 

Array Packaging 

Adeniyi A. Olumide, Kangkana Baishya, Guang-Ming Zhang, Derek R. Braden, David 

M. Harvey 

Electronic System-Integration Technology Conference (ESTC), Germany, 2018.  

Abstract: Determining the lifetime of solder joints on area array packaging 

through non-destructive evaluation subjected to thermomechanical loads is 

crucial for reliability testing of electronic devices. Circuit board assemblies 

(CBA) are expose to cyclic changes in temperature. The rate of change, exposure 

time and thermal excursion limits are dependent upon product application and 

usage known as ‘Mission Life’. The purpose of this study is to evaluate the 

application of an acoustic micro-imaging (AMI) inspection technique, in 

monitoring solder joints through lifetime performance. Test boards with various 

area array packages, different surface finish configurations and substrate 

thickness were subjected to an accelerated thermal cycling test (ATC). The test 

profile used was -40°C to +85°C with 30 minutes dwell. AMI scanning was 

performed every 4cycles over a total period of 220cycles, in order to obtain 

enough adequate failure data at high stress to accurately project (extrapolate) what 

the cumulative distribution function (CDF) at use will be. The cracks on the solder 

joints was determined by using statistical analysis to observe the behavior of the 

joints at the region of interest (ROI) with increase in thermal cycling. The 

differences in the plot patterns also confirms the variations of frequency intensity 

levels for different thermal cycles  

 

4) Non-destructive and Life Monitoring of Solder Joint under Thermal Cycling 

Conditions 
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  Adeniyi, O.A, Braden, D.R., Zhang, G.M. and Harvey, D.M. 2018 

  Liverpool John Moores University, Faculty Research Week, FET PGR 

          

Abstract: The purpose of this study is to evaluate the application of an acoustic 

micro-imaging (AMI) inspection technique, in monitoring solder joints through 

lifetime performance. Test boards with various area array packages, different 

surface finish configurations and substrate thickness were subjected to an 

accelerated thermal cycling test (ATC).In order to obtain enough adequate failure 

data at high stress to accurately project (extrapolate) what the cumulative 

distribution function (CDF) at use will be. 
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