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A B S T R A C T

Accurate assessment of tropical peatland carbon dynamics is important to (a) determine the size of the active car-
bon pool, (b) estimate the scale of transfers of peat-derived greenhouse gases (GHGs) to the atmosphere resulting
from land use change, and (c) support carbon emissions reduction policies. To date, information on the quality
of tropical peatland organic matter and its sensitivity to increases in global temperatures is limited, particularly
in the context of land conversion. The aim of this work is therefore to determine peat quality and temperature
response of potential GHG emissions under flooded conditions from tropical peatland sites. Whilst reflecting the
process of conversion from forest to oil palm plantation. Four land use types that represent the stages of con-
version from peat swamp forest to oil palm were chosen: (i) secondary ‘forest’, (ii) recently ‘drained’ but not
cleared forest (iii) cleared and recently planted ‘young oil palm’ plantation and (iv) ‘mature oil palm’ plantation.
Overall, surface peat carbon was more labile than deeper peats. The largest labile pool was measured at forest
sites. In the later stages of land conversion, the labile carbon had been lost and the relative abundance of recal-
citrant organic material increased. Potential GHG fluxes were greatest in surface peats compared to deeper peats
and declined as labile carbon was depleted following land conversion. Higher temperatures resulted in higher
potential GHG emissions at all stages of conversion, but the magnitude of the temperature response depended
on organic matter lability. For CO⁠2 fluxes, the temperature response was most pronounced at forest sites. This
reflects the greater peat lability at this land use. In contrast, for CH⁠4 emissions, there were increased emissions
both at forest and converted land types with higher temperatures. This suggests that increasing temperatures in
response to climate warming may drive higher CH⁠4 emissions from sites dominated by degraded organic mat-
ter. Collectively, this study demonstrates that during conversion from peat swamp forest to oil palm plantation,
the enhanced decomposition and reduced litter input rates is reflected eventually in reduced potential gross CO⁠2
emissions from peat. Nonetheless higher temperature resulting from climate warming may maintain high GHG
emissions at plantation sites.

1. Introduction

Palm oil is one of the most widely used agricultural products in the
world, with demand projected to increase in the future (Corley, 2009;
Koh and Wilcove, 2008; Vijay et al., 2016). An estimate by Koh and
Wilcove (2008) indicated that of all oil palm expansion between 1990
and 2005 in Malaysia, at least 50% has come at the expense of natural

rainforest, of which the natural vegetation is predominantly peat swamp
forest (Davies et al., 2010). Peat swamp forests play an essential role in
the global carbon cycle and are significant carbon sinks and stores, con-
taining an estimated 15–19% of the global peat carbon stock (610GtC)
(Dargie et al., 2017; Page et al., 2011).

Peat swamp forests are highly sensitive to disturbance by drainage
or deforestation for conversion to oil palm plantations (Evers et al.,
2017). Following conversion, the exchange of greenhouse gases (GHGs)
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between terrestrial ecosystems and the atmosphere is directly affected
(IPCC, 2000) and carbon accumulated over centuries or millennia is
rapidly released to the atmosphere, contributing to climate warming
(Couwenberg et al., 2010; Hooijer et al., 2012; Davies et al., 2010;
Moore et al., 2018). Since 1990, oil palm plantations have been linked
to 2.5GtC losses in carbon stock in tropical peatlands (Miettinen et al.,
2017). There is, however, a lack of data regarding how rapidly carbon is
lost to the atmosphere during the conversion process, and how changes
to organic chemistry of remaining stored C determine its susceptibility
to further release. A recent study in Malaysia suggests that organic mat-
ter content declines at least within the first one to 2 years following
the start of conversion (Tonks et al., 2017). Furthermore, the conver-
sion process altered surface peat functional organic chemistry as carbo-
hydrates were preferentially depleted as a result of aerobic decay, sug-
gesting that conversion will enhance peat recalcitrance but increase its
aromaticity (Tonks et al., 2017; Yule et al., 2018).

In addition to land use conversion, tropical peatlands are also af-
fected by climate change which is predicted to result in a 3–7 °C increase
in temperature and increased seasonality of rainfall, resulting in more
pronounced dry and wet seasons and, thus, longer periods of flooded
conditions (IPCC, 2007, 2014). Recent work in pristine peatlands in the
Neotropics has shown strong temperature responses of GHG emissions
under high water-table conditions for both CO⁠2 and CH⁠4 (Sjögersten et
al., 2018). However, temperature responses of GHG emissions from wet-
land soils differ considerably among land use types, likely in response
to differences in organic matter lability (Dunfield et al., 1993; Duval
and Radu, 2018; Gritsch et al., 2015; Inglett et al., 2012; Turetsky et
al., 2015). As deforestation rates in Southeast Asia show no signs of
slowing (Wijedasa et al., 2018), peat swamp forests are predicted to
be extinct by 2050 if current rates of peatland deforestation continue
unchecked (Miettinen et al., 2016). It is therefore critical that we quan-
tify the climate feedback potentials from both peat swamp forests and
also degraded peats in plantations. Indeed, it is plausible that high tem-
peratures further increase the climate burden of GHG emissions from oil
palm plantations, as the temperature sensitivity of organic matter de-
composition is predicted to increase with recalcitrance, as higher acti-
vation energies are required for catabolism, in line with kinetic theory
(Bosatta and Ågren, 1999; Davidson and Janssens, 2006).

GHG emissions from drained tropical peatland conversion are at
present overlooked in GHG emission budgets as considered by the UN
Framework Convention on Climate Change (IPCC, 2006; IPCC, 2014).
However, given their important role in the global carbon cycle and the
pressures they are exposed to from both land use and climate change,
it is vital to develop a mechanistic understanding of the controls of
GHG emissions from forested and converted peatlands to underpin the
delivery of evidence based sustainable land use management and pol-
icy (Evers et al., 2017). Therefore, this study aims to improve our
understanding of the impact of anthropogenic activities, e.g. drainage
and deforestation, on soil organic matter stability and subsequent GHG
fluxes from tropical peatlands. To achieve this, the study addresses three
specific hypotheses linked to how land use and temperature changes
alter peat lability and CO⁠2 and CH⁠4 fluxes: Our first hypothesis (1)
“land conversion of drainage-based oil palm plantation results in de-
pletion of labile substrates in surface peat affected by drainage, but
not in deeper peat layers” is based on the notion that drainage pro-
motes aerobic decomposition in surface peat but not in deeper peats
below the water-table where anoxic conditions remain (Couwenberg et
al., 2010; Jauhiainen et al., 2008). Because substrate lability is often
a predictor of GHG emissions in tropical peatlands (Hoyos-Santillan et
al., 2016; Wright et al., 2011), we hypothesise that (2) “ex situ anaer-
obic CO⁠2 and CH⁠4 production will be lower in the later stages of land
conversion to oil palm plantation as a result of depletion of labile car-
bon”. In line with kinetic theory (Bosatta and Ågren, 1999; Davidson

and Janssens, 2006) we also hypothesise that (3) “the impact of sub-
strate depletion on GHG production is exacerbated by higher tempera-
tures, with the strongest impact in surface peat”.

2. Materials and methods

2.1. Study sites

Field data and sample collection was conducted in November–De-
cember 2014 in North Selangor Peat Swamp Forest, Malaysia. The North
Selangor Peat Swamp Forest comprises Raja Musa Forest Reserve, Sun-
gai Karang Forest Reserve, Sungai Dusun Wildlife Reserve and part of
Bukit Belata Forest Reserve Extension, and overall covers an area of
81,304ha. The central area of the reserve is secondary mixed forest; the
majority of the area was selectively logged from the 19th century up
until the 1980s, and a significant area of the northern edge of the re-
serve has already undergone oil palm conversion (Kumari, 1996). Four
stages or classes of land conversion were identified (forest, drained for-
est, young oil palm plantation and mature oil palm plantation), and
five replicate study sites were sampled in each class (Figs. 1 and 2).
The forest sites chosen for this study had not been subject to logging
for approximately 40years; as a result the forest sites were in areas
of high canopy density (trees >25m, canopy coverage >80% (Global
Environment Centre, 2014).

Drained sites comprised a similar forest structure but large drainage
ditches (2–3m wide and ca. 2m deep) had been dug every few hundred
meters, 6months prior to field work, thus lowering the water-table. Sec-
ondary mixed forest and drained sites contained trees such as:

Macaranga pruinosa, Campnosperma coriaceum, Blumeodendron tok-
brai, Shorea platycarpa, Parartocarpus venenosus, Ixora grandiflora, Pter-
nandra galeata; ferns: Stenochlaena palustris, Asplenium longissimum,
Nephrolepis biserrata; palm: Cyrtostachys sp.; sedges: Cyperus rotundus
and abundant stands of Pandanus atrocarpus (Yule and Gomez, 2009).

Recently planted young oil palm sites, where both artificial lower-
ing of the water-table (drainage) and deforestation had occurred were
chosen for sampling. Oil palm seedlings were planted 6months prior to
sampling. The final sites chosen were mature oil palm, where the oil
palm trees were first generation and ca. 10–15years old. Detailed site
characteristics are summarised in Table 1.

2.2. Field sampling

In total, twenty 900m⁠2 (30m by 30m) field plots were marked out
(five plots in each of the four land conversion stages). Forest and ma-
ture oil palm areas were located widely around the North Selangor
Peat Swamp Forest to maximise spatial distribution, though access con-
straints and challenging terrain also influenced final locations. Drained
and young oil palm plantation sites were constrained to two main repre-
sentative areas. Sample points were selected randomly within plots us-
ing random number tables to determine direction and distance from the
south west corner of the plot. GPS coordinates were recorded for each
corner and are provided inTonks et al., 2017.

In each of the plots, we took three peat samples from depths 0–5cm
and 50–55cm that covered mostly oxic and anoxic conditions respec-
tively. We extracted samples using a side-filling Russian Peat Corer (Van
Walt, UK), with a 50cm long sampling chamber. Immediately following
extraction, we bagged and sealed the peat samples to avoid moisture
loss.

2.3. Laboratory incubations

Samples were transported from North Selangor, Malaysia to Univer-
sity of Nottingham, UK and frozen until analysis to avoid decay dur-
ing storage. At time of incubation, we removed the samples from the
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Fig. 1. Type of peatland habitats surveyed (a) forest with high water table, (b) drained forest with water table below the surface, (c) young oil palm and (d) mature oil palm plantation.

Fig. 2. Location of North Selangor Peat Swamp Forest and the sites belonging to the four different conversion stages. Forest, drained, young and mature oil palm plantation sites (Tonks
et al., 2017).

freezer and left them to defrost in a cold room (4 °C) before sub-sam-
pling and subsequent incubation of the peat samples under anaerobic
conditions (i.e. simulating flooded conditions) at two temperatures: 25
and 30 °C. We acknowledge that the cold stage of the samples may
have impacted on the original peat microbial community composition
(Arnold et al., 2008; Lee et al., 2007; Verchot, 1999), however, we still
expect the activity of the microbial community to be strongly controlled
by the peat organic chemistry and incubation conditions.

Prior to incubation, 3g of dry weight equivalent peat samples were
placed in 125ml serum bottles (80 in total) and flooded with 1cm⁠3

of water. We flushed the serum bottles with nitrogen for 2min to dis-
place oxygen and create anaerobic conditions before sealing with a rub-
ber septa (13×19×12mm; Rubber B.V., Hilversum, NL), and an alu-
minium crimp top. Serum bottles were placed in either 25 °C or 30 °C
temperature control rooms to replicate ambient and elevated soil condi-
tions.

3
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Table 1
Soil and site characteristics for sampling locations in North Selangor. Annual precipitation
from January 2015–December 2015 represents regional values. Means±one SEM.

Characteristics Forest
Drained
forest

Young oil
palm

Mature oil
palm

pH 3.4±0.06 3.7±0.06 3.7±0.08 3.9±0.08
OM % 94.1±1.5 88.8±2.5 86.1±5.93 77.3±5.9
Moisture content

(%)
82.3±28 46.3±22 33.9±9 56.56±21

C/N ratio 34.5±2.7 28.2±1.2 37.9±4.0 29.1±3.5
Mean annual

precipitation
(mm)

209.5±34 209.5±34 209.5±34 209.5±34

Water table depth
(cm)

6.0±22 −14±23 −39±15 −21±18

Shear strength (kPa) 8.4±0.6 6.8±0.9 7.8±0.6 9.7±0.6

To allow the microbial community time to recover from disturbances
(freezing/thawing and handling during preparation of the microcosm)
we left the samples for 7days. After that the serum bottles were opened
to the air to dissipate accumulated headspace gases and then flushed
with nitrogen for 2min and re-sealed. Following another 7days of incu-
bation, headspace gas samples (5ml) were collected weekly by syringe
from each serum bottle and analysed immediately by gas chromatogra-
phy (GC-2014, Shimadzu UK LTD, Milton Keynes, UK) over 4weeks.

We analysed CO⁠2 and CH⁠4 concentration using a single injection sys-
tem, with a 1ml sample loop that passed the gas sample using N⁠2 as
a carrier. Thermal conductivity detectors (TCD) and flame ionization
detectors (FID), were used to measure CO⁠2 and CH⁠4 respectively. The
fluxes were calculated using linear regression of the gas concentration
against time. The GHG data was converted to mass per volume and mass
per weight by the use of the ideal gas equation and the molecular mass
of each gas as shown in Eq. (1). From this, the gas flux from each incu-
bation was calculated using Eq. (2).

(1)
Where P is the atmospheric pressure (≈ 1atm), V is the volume

of headspace (dm⁠−3), n is the number of moles of gas, R is the ideal
gas constant (0.08205746 LatmK⁠−1 mol⁠−1), and T is temperature
(273.15+room temperature in °C).

(2)

where E is the flux of each gas (mgm⁠−2 h⁠−1), n is the number of moles
(CO⁠2 or CH⁠4), m is the molar weight (CO⁠2: 44.01 and CH⁠4: 16.04), a is
the area of soil core used and t is the time in the hour.

2.4. Rock-Eval 6 pyrolysis

Rock-Eval pyrolysis is a technique which has been used recently to
trace bulk changes in organic matter composition and degree of compo-
sition (Disnar et al., 2003; Newell et al., 2016). This technique predicts
reliable soil C contents and is an appropriate and novel tool for assess-
ing the vulnerability of SOC stocks (Saenger et al., 2013). For a more
detailed description on Rock-Eval pyrolysis as applied to tropical peats
see Upton et al. (2018) and Girkin et al. (2018).

Surface and subsurface peat samples were analysed using a
Rock-Eval 6 analyser. Freeze-dried powdered peat samples (60mg) were
heated at 300 °C for 3min before an increase in temperature to 650 °C
at a rate of 25 °C per minute in an inert N⁠2 atmosphere. Residual car-
bon was subsequently oxidized from 300 °C to 850 °C at a rate of 20 °C
per minute. The release of hydrocarbons during the two-stage pyrolysis
process was detected by a flame ionization detector, with an infrared
cell detecting the release of CO and CO⁠2 during the thermal cracking of

the organic matter. Rock-Eval analysis generated a range of standard pa-
rameters including:

- S1, a measure of free hydrocarbons released on heating to 300 °C.
- S2, hydrocarbons released on the thermal cracking of organic matter

for temperatures up to 850 °C.
- TpkS2 corresponds to the temperature when the maximum amount of

hydrocarbons was released during pyrolysis.
- Total organic carbon (TOC⁠RE) is calculated from the sum of the carbon

moieties (HC, CO and CO⁠2).
- The Hydrogen Index (HI mgHCg⁠−1 TOC), a measure of hydrocarbons

released relative to TOC, was calculated from S2×100/TOC⁠RE.
- The Oxygen Index (OI mgO⁠2 g⁠−1 TOC), corresponding to the amount

of oxygen released as CO and CO⁠2 relative to TOC⁠RE, was calculated
from S3×100/TOC⁠RE.

- The labile, intermediate and passive C pools (Cl, Ci, and Cp, respec-
tively) which correspond to the deconvolution of S2 pyrograms into
six Gaussian signals (F1–F6) based on maximising R⁠2 coefficient val-
ues. F1–F6 values have previously been attributed to organic com-
pounds of increasing complexity and recalcitrance (Disnar et al., 2003;
Sebag et al., 2006).

- F1–F2 signals represent high labile fresh plant material including sim-
ple polysaccharides, HC compounds are pyrolysed below 360 °C.

- F3 relates to increasingly humified macromolecules which are pyrol-
ysed between 360 and 450 °C

- F4–F6 signals can be attributed to the presence of highly mature and
recalcitrant soil organic matter, or charcoal, where HC are pyrolysed
above 450 °C.

- C⁠l represents the highly labile hydrocarbon compounds (F1 and F2),
C⁠i corresponds to the more stabilised soil carbon pool (F3), and C⁠p
represents the highly recalcitrant passive pool (F4–F6) (Saenger et al.,
2013).

2.5. Statistical analysis

Differences in Rock-Eval parameters and indices were assessed us-
ing linear mixed effects models fitted using Residual Maximum Like-
lihood (REML) to account for variable dependence between sampling
plots. Conversion class and depth were selected as fixed effects and sites
as random effects. Fluxes of CH⁠4 and CO⁠2, proportion of carbon in C⁠l,
C⁠i and C⁠p, and total organic carbon were log-transformed to meet as-
sumptions of normality and were also assessed using REML. Rock-Eval
analysis provides multiple parameters, and to summarise these and to
assess which were important in regulating GHG fluxes we used Principal
Component Analysis (PCA), based on correlation matrices. All statistical
analyses were conducted in GenStat (v17.07).

3. Results

Thermolabile hydrocarbons (S1 i.e. poorly stabilised SOC), which
are released on heating at 300 °C, were significantly different between
land uses in surface peats (F⁠3,32 =7.79, P<0.001, Fig. 3a), with the
highest concentrations measured at drained sites, followed by young oil
palm, forest and mature oil palm. More recalcitrant hydrocarbons (S2
i.e. greater thermostable C) which are released between 300 and 650 °C
(Johannes et al., 2006), also differed significantly in surface peats be-
tween land uses (F⁠3,32 =5.45, p<0.05, Fig. 3b) and demonstrated a
similar pattern as S1 values, with the highest values measured in
drained sites and the lowest in mature oil palm plantations (Fig. 3a &
b).

TpkS2 provides an overall assessment of the energy of the C bonds
of molecules, and can be interpreted as the amount of energy re-
quired for microorganisms to decompose SOM. TpkS2 showed an in-
crease with land conversion towards oil palm plantations (F⁠3,32 =3.85,
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Fig. 3. Selected Rock-Eval 6 parameters across the different land uses in surface and subsurface peats. Where F is forest, D is drained, YOP is young oil palm and MOP is mature oil palm.
* indicates land use significance at p<0.05, ** at p<0.01 and *** at p<0.001. There were no significant differences with depths or interactions between land use and depth, p>0.05.

p<0.05, Fig. 3c). The lower TpkS2 values in forest and drained sites
(403 and 416 °C respectively) are characteristic of the thermal break-
down of more labile polysaccharides and lignins. In contrast, values
over 420 °C, as measured in young and mature oil palm sites (425 and
441 °C respectively), are typical of increasingly immature humic sub-
stances (Disnar et al., 2003). TOC was high and showed little variation
between forest, drained and young oil palm sites (ranging from 45% to
47%); however, TOC was significantly lower in the mature oil palm sites
with 37% (F⁠3,32 =2.92, p<0.05, Fig. 3d).

In surface peats, HI (i.e. the amount of hydrogen relative to the
amount of organic carbon) decreased from 312mgHCg⁠−1 TOC⁠RE6 at
the drained sites to 252mgHCg⁠−1 TOC⁠RE6 in mature oil palm sites
(F⁠3,32 =2.73, p=0.060, Fig. 3e). OI (i.e. the amount of oxygen rela-
tive to the amount of organic carbon) increased from 180O⁠2 g⁠−1 TOC⁠RE6
in the forest sites to 132mgO⁠2 g⁠−1 TOC⁠RE6 in the recently

planted sites (F⁠3,32 =2.73, p=0.060, Fig. 3f). In forest and drained
sites, HI was higher in the subsurface compared to surface peats, and,
similarly with OI, higher concentrations were measured in forest,
drained and young oil palm sites in the subsurface peats (Fig. 3e & f).

In surface peats at forest, drained and recently planted sites, the
labile carbon pool (C⁠l) was the largest of the three pools, account-
ing for 69%, 61% and 50% respectively (Fig. 4a). In contrast, C⁠l dif-
fered significantly in mature oil palm sites from the other land uses
(F⁠3,16 =3.41, p<0.05, Fig. 4a) and accounted for only 15% of carbon.
A similar trend was observed in subsurface peats in the C⁠l pool, with
a decrease in lability with conversion stages, although not significant
(F⁠3,16 =0.04, p=0.84, Fig. 4b). The intermediate carbon pool (C⁠i) var-
ied significantly in surface peats (F⁠3,16 =3.83, p<0.05, Fig. 4a) with
mature oil palms sites having the largest contribution in this pool of
67%. The passive pool (C⁠p) differed significantly between sites in the

Fig. 4. Proportions of labile (C⁠l), intermediate (C⁠i) and passive (C⁠p) carbon pools for different sites in a) surface and b) subsurface peats (n=5). Means±one SE. * indicates land use
significance at p<0.05 and ** at p<0.01. There were no significant differences with depth or interactions between land use and depth, p>0.05.
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surface peats (F⁠3,16 =4.58, p<0.05, Fig. 4a) with the highest contribu-
tion at drained sites and the lowest in forest sites (29% and 5% respec-
tively).

Peats incubated at 25 °C and 30 °C exhibited a significant declining
trend in GHG fluxes with conversion in surface samples (F⁠3,16 =9.4,
p<0.001, Table 2, Fig. 5), with a similar pattern, although less pro-
nounced, in subsurface peats (Fig. 5). Peats incubated at 30 °C had sig-
nificantly higher CO⁠2 fluxes across all land uses (F⁠1,48 =35.1, p<0.001,
Table 2, Fig. 5a & b) when compared to peats incubated at 25 °C
with the highest mean fluxes from forest peats, with an average of
5.2μgg⁠−1 h⁠−1 from peats incubated at 25 °C and 9.1μgg⁠−1 h⁠−1 from peats
incubated at 30 °C.

CH⁠4 fluxes were significantly greater in forest and drained sites com-
pared to both oil palm plantation ages in surface peats (F⁠3,16 =9.4,
p<0.001, Table 2, Fig. 5c & d), with diminishing difference in deeper
peats from the young and mature oil palm sites.

The scores and loading of the first and second principal components
accounted for most of the variance for surface and subsurface peats,
60% and 50% respectively. The surface peats (Fig. 6a & c) display clus-
tering in each land use, demonstrating a difference in Rock-Eval para-
meters between sites, whereas in subsurface peats (Fig. 6b & d) there
appears to be no clustering of parameters for each land use. In sur-
face samples, mature oil palm sites are best described by TpkS2 and OI,
whereas drained sites are predominantly separated by S1, S2 and C⁠l pa

rameters (Fig. 6c). CO⁠2 fluxes are regulated by TpkS2 in surface peat but
by S2 and HI in subsurface peats; and in contrast, CH⁠4 fluxes are regu-
lated by C⁠i pool in subsurface peats (Fig. 6d).

4. Discussion

4.1. Depletion of labile substrates with conversion to oil palm plantation

Land conversion resulted in a reduction in the labile carbon pool,
which is highly available to the peat microbial community. Conversion
from forest to mature oil palm resulted in a labile carbon pool reduction
from ca. 70% to <20%, with an accompanying increase in the inter-
mediate carbon pool (from ca. 20 to 70%) in surface peat (Fig. 4). This
supports the first hypothesis, which predicted that losses of labile car-
bon with land conversion would be most pronounced in surface peat.
Depletion of labile carbon pools and a relative build-up of more recal-
citrant carbon in surface peat is in line with selective depletion of car-
bohydrates and decreasing carbohydrate to aromatics ratios and peat
loss following land conversion demonstrated at these and other sites in
Southeast Asia (Matysek et al., 2017; Tonks et al., 2017). This is further
supported by the greater thermal stability of the surface peat at the ma-
ture oil palm sites than forested and drained forested sites (Fig. 6a and
c), which previously have been linked to peat degradation in tropical
peatlands in Panama (Upton et al., 2018).

Table 2
Gas flux statistics from different land uses and depths assessed by REML.

CO⁠2 CH⁠4

F-statistic d.f. p SED F-statistic d.f. p SED

Land use 9.4 3,16 <0.001 0.02 5.57 3,16 <0.05 0.02
Depth 63.7 1,48 <0.001 0.01 37.57 1,48 <0.001 0.01
Temp 35.1 1,48 <0.001 0.01 12.75 1,48 <0.001 0.02
Land use∗Depth 8.28 3,48 <0.001 0.02 9.8 3,48 <0.001 0.02
Land use∗Temp 0.18 3,48 0.909 0.02 0.33 3,48 0.806 0.02
Depth∗Temp 3.05 1,48 0.087 0.01 6.53 1,48 <0.05 0.01
Land use∗Depth∗Temp 0.59 3,48 0.623 0.03 1.37 3,48 0.264 0.03

Significant differences in italics.

Fig. 5. Logged (Log10) carbon dioxide (a & b) and methane fluxes (c & d) at 25 °C (a & c) and 30 °C (b & d) from surface (0–5cm) and subsurface (50–55cm) peats from forest (F), drained
(D), young (YOP) and mature oil palm (MOP) sites in ugg⁠−1 h⁠−1. Carbon dioxide fluxes are shown from time point one and methane from time point four where production was greatest.
The pattern in the data was the same at the different time points (n=5). Means±one SE.
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Fig. 6. Principal component scores (a & b) and loadings (c & d) for Rock-Eval parameters and carbon dioxide and methane fluxes from surface (a & c) and subsurface (b & d) peats.
Combined PC1 and PC2 account for 60% and 56% of the variance respectively.

The changes in peat organic chemistry are linked to two main
processes. First, lowered water-tables increase the oxygenation of the
peat surface layer and enhance the degradation of organic polymers by
bacteria and fungi (Couwenberg et al., 2010). The different responses
between the surface and deeper peats to land use change in this study
clearly demonstrate the impact of the long-term position of the wa-
ter-table in peat, with the loss of labile carbon above the water-table
and the preservation of significant quantities of labile organic material
below the water-table.

Second, the shift in the vegetation litter inputs following conversion
will also strongly impact on the relative abundance of the different car-
bon pools. In PSF, the vegetation adds carbon to the peat surface as
litter and into the peat from the rhizosphere (Girkin et al., 2018b &
2018c), and thus contributes to maintenance of the peat carbon stores
by compensating for carbon losses that result from concurrent decom-
position (Jauhiainen et al., 2016). Little or no such inputs occur when
sites are fully converted. Peat swamp forest litter is composed largely
of coarse and fine roots, woody debris and leaf litter, and is rich in
both cellulosic and more complex ligneous substrates (Hoyos-Santillan
et al., 2016; Miyajima et al., 1997). However, as lignin is resistant to de-
composition and ligninolytic microbes are obligate aerobes, the amount
of cellulosic substrates decrease as peat decomposition advances even
under anoxic condition, explaining the depletion of labile carbon with
depth even at the forest sites (Hoyos-Santillan et al., 2016). Taken to-
gether it is clear that the lowered water tables and reduced quality and
quantity of litter inputs associated with land conversion strongly alters
the peat organic chemistry as labile organic matter are depleted through
greater decomposition processes and not replenished through fresh lit-
ter inputs.

4.2. Linking CO⁠2 and CH⁠4 fluxes and organic matter properties

As expected, potential CO⁠2 production from flooded peat was sev-
eral orders of magnitude higher than CH⁠4 production, as shown pre-
viously in both disturbed and natural tropical wetlands (IPCC, 2014;
Hoyos-Santillan et al., 2016), with fluxes of similar magnitude but

slightly lower than those from pristine Neotropical peatlands
(Sjögersten et al., 2018). Furthermore, emissions were consistently
higher in surface peats suggesting these have greater production poten-
tial than degraded subsurface peats, likely reflecting substrate limitation
of microbial decomposition processes with depth (Hoyos-Santillan et al.,
2016; Sihi et al., 2018; Upton et al., 2018; Wright et al., 2011); though
other factors may also play a role, e.g. shifts in the microbial community
structure with depth in response to changes in peat properties (Jackson
et al., 2009).

The successive reduction in ex situ CO⁠2 and CH⁠4 fluxes from water-
logged peat with progressively more advanced land conversion stages,
together with the parallel depletion of labile carbon in surface peat (Fig.
5), suggests that the labile carbon pools strongly control GHG emissions
in line with the second hypothesis which predicted that “ex situ anaer-
obic CO⁠2 and CH⁠4 production will be lower in the later stages of land
conversion to oil palm plantation as a result of depletion of labile car-
bon”. Similar strong links between GHG fluxes from peats under anaer-
obic conditions and peat organic chemistry have previously been shown
for undisturbed peatlands (Wright et al., 2011; Hoyos-Santillan et al.,
2016), with greater fluxes found from peat with larger labile carbon
pools. In contrast, no changes in GHG production were found with land
conversion from the deeper peats, which is likely due to limited impacts
of land conversion on decomposition in the peat that remained below
the water-table even after drainage.

These findings clearly demonstrate that the loss of peat due to en-
hanced decomposition following conversion results in more recalcitrant
peat which limits GHG emissions under waterlogged conditions. How-
ever, it is important to note that this substrate limitation of GHG emis-
sions is most likely controlled by the anaerobic conditions which limit
the microbial communities' capacity to utilise more complex organic
molecules (e.g. lignin and humic substances). Under aerobic conditions,
CO⁠2 fluxes would likely remain high across the conversion gradient
as has been shown in situ in peatlands in South Selangor, Malaysia
(Matysek et al., 2017), as the oxygen availability supports the activity of
microbial communities capable of degradation of complex organic mol-
ecules (Hoyos-Santillan et al., 2016).
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The relatively lower fluxes of both CO⁠2 and especially CH⁠4 from the
mature oil palm sites suggest that although re-flooding of oil palm plan-
tations may result in some CH⁠4 emissions in line with Jauhiainen et al.
(2016), raising water-tables will not increase CH⁠4 emissions to the lev-
els of those found in intact PSFs in the short term. Limited increases
in CH⁠4 production following rewetting of peats that have been exposed
to prolonged periods of oxic conditions has been reported previously
from high latitude peatlands (Sjogersten et al., 2016) as well as tropical
peatlands (Jauhiainen et al., 2008, 2016). This is likely linked to slow
recovery of the methanogenic communities from oxic peat conditions.
Indeed, functional shifts in microbial community composition, e.g. de-
cline in macro fungi abundance, in response to conversion of PSF to oil
palm plantations, as has been shown previously at these sites (Shuhada
et al., 2017), suggests that strong impacts of land conversion should
be expected on the microbially mediated decomposition processes. In
the longer term, microbial communities and pools of labile substrates
may recover if water-tables are raised and the native vegetation reintro-
duced (Jauhiainen et al., 2008; Jauhiainen et al., 2016). As peat swamp
forests have higher percentage canopy cover, denser canopy closure
(Yule and Gomez, 2009) and greater litter inputs than oil palm planta-
tion (Guillaume et al., 2015), restoring peat swamp forests would likely
increase pools of labile organic matter in surface peats which could shift
microbial community functionality towards its original form (Nurulita
et al., 2016). However, replacing the organic matter lost via rapid de-
composition during the conversion would only recover slowly as the
NPP of tropical peat swamp forests are low (ca. 1200g C m⁠−2 yr⁠−1) when
compared to the CO⁠2/C stock loss rates reported from recently drained
oil palm plantations (Couwenberg et al., 2010; Matysek et al., 2017;
Sjögersten et al., 2014).

4.3. Impact of temperature on surface and subsurface fluxes

The strong impact of temperature on both anaerobic CO⁠2 and CH⁠4
fluxes suggests that their production is highly sensitive to higher tem-
peratures in line with findings from tropical peatlands in Panama
(Sjögersten et al., 2018). The anaerobic CO⁠2 fluxes were consistently
higher at 30 °C than 25 °C across depths and land conversion stages
suggesting that the microbial community was temperature limited. The
substantial increase in anaerobic CO⁠2 fluxes at the forest and drained
sites at the 30 °C treatment indicate that the large labile C pool at
these sites (Fig. 4.) supports high CO⁠2 emissions (Wright et al., 2011;
Hoyos-Santillan et al., 2016; Duval and Radu, 2018) and that forested
peatland sites may represent a substantial positive ecosystem feedback.

CH⁠4 production was more temperature sensitive at sites with de-
graded peat (oil palm sites) supporting kinetic theory that postulates
greater energy demands for degradation of complex organic molecules
(Bosatta and Ågren, 1999; Davidson and Janssens, 2006). Indeed, CH⁠4
emissions at 30 °C were comparable among land use classes, suggest-
ing that high temperatures (30 °C in this study) overcome substrate
limitation of CH⁠4 production supporting hypothesis three which pre-
dicted that the impact of substrate depletion on GHG production is ex-
acerbated by higher temperatures, with the strongest impact in sur-
face peat. This compares with anaerobic incubations studies of min-
eral subtropical wetland soils that also report comparable CH⁠4 emissions
among land uses (ranging from agricultural to riparian forest) at 30 °C
despite differences among land uses for anaerobic CO⁠2 fluxes (Moore
et al., 2018). As only two temperatures were used in this study, re-
sults should be interpreted carefully, as in other tropical peat systems
the response of greenhouse gas fluxes to warming is not always linear,
meaning that small temperature changes can result in large increases
in emissions (Sjögersten et al., 2018). However, the result indicates
clearly that the climate burden from conversion of tropical peatlands to
drainage-based agriculture/plantation will increase as regional temper-
atures continue to soar (IPCC, 2006). This adds further to the serious

concerns of the implications for the global climate of the ongoing rapid
conversion of peat swamp forest to agriculture and oil palm plantations.

5. Conclusion

We have shown that high GHG emissions from surface peats are
strongly controlled by labile substrate availability, suggesting a direct
link between fresh litter inputs and microbial community GHG produc-
tion, as well as depletion of labile carbon deeper in the peat profile.
We also conclude that although higher temperatures generally increased
GHG fluxes, the magnitude of the temperature response was depen-
dent on organic matter lability, and, that the temperature response dif-
fered markedly between CO⁠2 and CH⁠4 fluxes. For CO⁠2 fluxes the great-
est temperature response was found at forest sites, potentially reflect-
ing high substrate availability, whilst for CH⁠4 fluxes higher tempera-
tures increased emissions at both forest and converted sites, implying
that climate warming are likely to drive higher CH⁠4 fluxes not only for
sites with high labile carbon supplies (forest) but also from sites domi-
nated by degraded organic matter (oil palm plantations) during periods
of high water tables.
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