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Abstract: Detection of abnormalities in wireless capsule endoscopy (WCE) images is a challenging
task. Typically, these images suffer from low contrast, complex background, variations in lesion shape
and color, which affect the accuracy of their segmentation and subsequent classification. This research
proposes an automated system for detection and classification of ulcers in WCE images, based on
state-of-the-art deep learning networks. Deep learning techniques, and in particular, convolutional
neural networks (CNNs), have recently become popular in the analysis and recognition of medical
images. The medical image datasets used in this study were obtained from WCE video frames. In this
work, two milestone CNN architectures, namely the AlexNet and the GoogLeNet are extensively
evaluated in object classification into ulcer or non-ulcer. Furthermore, we examine and analyze
the images identified as containing ulcer objects to evaluate the efficiency of the utilized CNNs.
Extensive experiments show that CNNs deliver superior performance, surpassing traditional machine
learning methods by large margins, which supports their effectiveness as automated diagnosis tools.

Keywords: deep learning networks; AlexNet; GoogLeNet; convolutional neural networks; wireless
capsule endoscopy; ulcer detection

1. Introduction

Given that deep learning tools were successfully applied to image analysis, researchers have
explored their application in medical image analysis [1–8]. Deep learning has proven to be a powerful
machine learning tool and has demonstrated its ability in automated diagnosis of diseases [2,3,9].
Therefore, it has been considered for use in medical image analysis and recognition. It can improve
medical image examination by enhancing the abilities of clinicians and health professionals in the
context of early diagnosis. Consequently, it can potentially help in prognosis and in the development
of effective disease treatment regimes.

In medical image applications, several deep learning models were developed and applied [3,4,6,9].
One type of high-performance deep learning network is convolutional neural networks (CNNs), which
demonstrated a crucial capacity to automatically extract high-level features from multi-dimensional
data, whilst exhibiting high accuracy rates. CNNs are able to process data in various forms, e.g.,
multi-dimensional features, including signals, images, and videos [7,8,10,11]. The architecture of CNN
is designed as a series of layers, particularly, convolutional layers and pooling layers, followed by fully
connected layers.
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A review of the literature shows that CNNs were successfully used to detect, segment and
recognize objects and regions in images [5,9,12–15]. Litjens et al. [9] conducted a survey of medical
image analysis using deep learning algorithms. This indicated that deep learning has covered almost
every aspect of medical image analysis. In addition, the work noted that many pre-trained networks
were used as feature extractors and that various CNN architectures were chosen to segment and classify
a variety of medical images. Conversely, Szegedy et al. [12] focused on an efficient deep neural network
architecture for computer vision. In [16], CNN models were used to detect polyps in colonoscopy
videos. Each CNN model used individual features, including texture-, shape-, and color-based ones,
which were combined with temporal information to detect the occurrence of polyps. Next, the results
of these individual models were fused together and final decisions were made. Finally, Wolterink et
al. [8] used paired CNNs to detect coronary calcium in CT angiography images. Motivated by the
performance of deep neural networks in medical image analysis, researchers have aimed to further
enhance the performance of deep neural networks by fine tuning their network configuration by
investigating different types of architectures, varying numbers of layers, learning rates, etc. The aim of
the present study is to investigate the use of deep learning networks in the context of ulcer detection in
WCE images with high accuracy and speed. Owing to the limited size of available data, pre-trained
CNN architectures were considered, as recommended in [17].

Along this direction, the present study attempts to examine for the first time the performance
of two pre-trained CNNs, GoogLeNet [12], and AlexNet [13], in terms of their ability to recognize
abnormalities, i.e., the occurrence of ulcers, in WCE images. In particular, the CNNs are trained on
WCE images to detect and classify ulcers, which are known to be the most common gastrointestinal
(GI) abnormality [18,19]. Furthermore, the potential of these two CNNs for ulcer detection is validated
using a dataset consisting of 526 images taken from WCE videos, using a variety of performance
criteria, including sensitivity, specificity, accuracy, loss, and area under curve (AUC).

The remainder of this paper is organized as follows. Wireless Capsule Endoscopy (WCE), which
was applied to validate the architecture of the two CNNs is explained and related works are briefly
reviewed in Section 2. Then, a concise literature review in the subject area of the research is presented in
Section 3. The present study’s dataset and methods are described in Section 4. Next, the experimental
results are presented and discussed in Section 5. Finally, the conclusions of this work and suggestions
for future research are presented in Section 6.

2. Wireless Capsule Endoscopy Image Ulcer Detection Techniques

In this section, we provide an overview of wireless capsule endoscopy (WCE) and the use of deep
learning for the analysis of WCE images.

2.1. Wireless Capsule Endoscopy

Compared to traditional endoscopy, WCE provides low-risk, noninvasive image-video inspections
of patients’ digestive tracts [6]. WCE has been considered a first-line examination tool that detects
abnormalities, including Crohn’s disease, ulcers, bleeding and polyps [9], during routine checks. WCE can
provide useful insights for several types of ulcers affecting the GI tract, including esophageal [20],
peptic [19], gastric [21], and duodenal [22]. For each patient, more than 55,000 images of the GI tract are
captured, but evidence of abnormalities may appear in only a few of them. Therefore, physicians often
spend hours analyzing the images [23], which may involve various challenges, including low contrast and
complex background, variations in lesion shape and color, thus affecting the accuracy of segmentation
and subsequent classification [24]. These issues complicate objective disease diagnosis, thus necessitating
the opinions of multiple experts to avoid misdiagnosis [25]. Consequently, there is high demand for an
alternative method for automated detection of GI abnormalities, and considerable effort has been directed
into the automatic inspection and analysis of WCE data.

The majority of works in the literature focus on the analysis of textural features, extracted from
WCE images. Studies used traditional machine learning techniques to detect abnormalities in images
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containing texture-based features [26–30]. Li and Meng [25,27] proposed curvelet-based local binary
patterns (LBP) as features to detect ulcer regions, as they capture multi-directional features and
show robustness to illumination changes. Both multi-layer perceptrons (MLP) and support vector
machines (SVM) was used in ulcer region recognition. MLP had the highest accuracy, i.e., 93.28%,
while SVM achieved 88% sensitivity [27]. Along the same direction, local binary pattern variance
and the discrete wavelet transform were used in [26] to automatically detect abnormalities in WCE
images. Computer-aided detection of ulcers in WCE images was pursued in [28] using an approach
based on completed LBP and Laplacian pyramid. It was found that the magnitude of the proposed
descriptor is robust against illumination changes. Moreover, they evaluated detection accuracy in the
green and Cr components in RGB and YCbCr color spaces, achieving average accuracies of 95.11% and
93.88%, respectively, using support vector machines (SVM). In [29], a large number of features based
on both texture and color information were considered in the context of GI abnormality detection and
segmentation using a variety of machine learning paradigms. Experimental results indicated that the
SVM combined with sequential floating forward search (SFFS) and the proposed vector supported
convex hull (VSCH) algorithms performed best in detection of bleeding, focal, and excessive ulcers.
Sources of noise, such as air bubbles, are first addressed in [30] the color-saliency region detection
(CSD) method, followed by feature extraction using the color channels modelling of local binary
pattern operator (CCLBP). SVM is used for detection of the lesions of interest. In this method, CCLBP
combines both color and grayscale information, thus providing robustness to illumination changes,
while maintaining highly discriminative features for classification purposes. Bchir et al. [31] evaluated
nine visual features, including local binary patterns, CIE lab color histograms, curvelet transforms,
chromaticity moments color, scalable color descriptors, color coherence vectors, homogeneous texture
descriptors, YCbCr color histograms, and HSV (hue, saturation, and intensity value) color histograms
for ulcer detection in WCE video frames. They reported 96% accuracy when using SVM.

2.2. Deep Learning Network in WCE

The evolution of deep learning provided new opportunities to improve the analysis of WCE
images [10,32–35]. A review of the literature shows that deep learning has proved to be more successful
than traditional machine learning tools. In 2018, Fan et al. [10] used deep learning to analyze WCE
frames in detection of both ulcers and erosions that appear in the intestine. The study applied the
AlexNet CNN and achieved high accuracy (95.16%) and sensitivity (96.80%), demonstrating the
efficiency of the deep learning approach. Our proposed methodology is different to [10] in which we
utilized AlexNet using different WCE data sets and learning parameters.

Jia et al. [33] used deep CNN to automatically detect bleeding in WCE images. Their experiment
achieved a F-measure score of 99%. Pei et al. [35] have also used fully convolutional networks (FCNs)
with long short-term memory (LSTM). The FCN-LSTM was trained on five cine MRI sequences that had
no labeling, and the FCN network was trained on a large dataset of 50 raw cine MRI sequences, which
were labeled.

Segu et al. [35] used a computer aided decision system based on a generic feature-learning
approach for WCE. They built a large dataset of 120,000 labeled WCE images to train the CNN.
Their results achieved a classification accuracy of 96%. Wimmer et al. [34] trained a CNN using
different numbers of layers and filters and various filter dimensions in order to diagnose celiac disease.
They combined CNN with SVM. The highest performance achieved was 97%.

In [32], automated feature extraction using a CNN architecture was applied, and then the extracted
features were used to train SVM to detect inflammatory gastrointestinal disease in WCE videos.
The study achieved accuracies of up to 90%. Yuan and Meng [14] proposed a deep learning network
named stacked sparse auto-encoder with image manifold (SSAEIM). It was used to recognize polyps
in WCE images. The study found that the SSAEIM was able to detect polyps, bubbles, and turbid
images with 98.00, 99.50, and 99.00% accuracy, respectively.
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3. Literature Review

Traditional endoscopy techniques used for the detection of ulcer are invasive and painful
procedures. To overcome these limitations, wireless capsule endoscopy examinations are introduced
to provide non-invasive, painless, and effective diagnosis of the gastrointestinal tract [26].

Yuan et al. [36] proposed a two-stage, fully automated computer-aided detection system for the
detection of ulcers in WCE images. First, they automatically detect salient regions across WCE images
and overcome problems associated with the use of traditional methods, which ignore neighboring
and boundary information of the object. Then, they use the locality-constrained linear coding (LLC)
method for the classification of ulcers.

In [37], the authors proposed the use of color features—including RGB, HSV, and CCV—to analyze
the status of the small intestine. Their extensive experiments indicated that the C4.5 method generated
the best results for the classification of bleeding and ulcers in WCE images. Furthermore, their
investigations showed that CCV features enhanced the efficiency of WCE image analysis.

Nawarathna et al. [38] combined the Leung and Malik (LM) filter and LBP to propose a new
method for detection of abnormalities in endoscopy videos. The authors used the KNN algorithm to
classify image blocks, based on the distribution of textures.

In contrast to previous researches, this work proposes the novel application of pre-trained
convolutional neural network, GoogleLeNet, for the detection of ulcers in WCE images. While the
use of machine learning algorithms, such as SVM [31] and KNN [38], for the classification of WCE
image necessitates the use of extensive and time-consuming feature selection techniques, the proposed
methodology using CNN automatically extracts features from WCE images and successfully detects
ulcers. To demonstrate the benefits of the CNN approach, we perform extensive simulations using a
number of features extracted from WCE images, namely, color histograms, LBP and color coherence,
and MLP networks to evaluate the quality of feature information and its effect on classification accuracy.
Moreover, we provide performance comparisons with state-of-the-art machine learning algorithms.

4. Methods

4.1. Convolutional Neural Networks

The architecture of CNN is different from that of regular neural networks. CNN layers have
neurons organized in three dimensions, namely, width, height, and depth, where every layer in a CNN
converts a 3D input volume into a 3D output volume of neuron activations. Typically, there are three
types of layers in a CNN architecture, i.e., convolutional, pooling, and fully connected layers. It is not
necessary that all neurons in one layer are connected to all the neurons in the next layer. Sequences of
convolutions and pooling processes are performed on the input data with the use of a filter to produce
a feature map. These feature maps are combined together as the final output of the convolution layer.

The convolutional layer is considered the essential block of a CNN and correspondingly makes
training of CNN time consuming. In these layers, a convolution operation is applied to the input in
order to compute the outputs of neurons. The parameters of convolutional layers are shared sets of
weights (also known as kernels or filters), which have very small receptive fields.

Pooling layers employ nonlinear down sampling procedures. Max pooling is a popular nonlinear
operation. Here, the input is divided into a group of non-overlapping frames and the maximum for each
group is the output. In this way, max-pooling layers reduce the number of parameters, the possibility
of overfitting, and the computational complexity of the network. Therefore, a max-pooling layer is
usually inserted between convolutional layers.

Dropout layers are usually inserted to reduce the risk of overfitting. The main role of the dropout
layer is to drop neurons in the CNN and their connections with a certain probability [39]. The most
common activation function is the non-saturating ReLU (rectified linear unit). Fully connected layers
perform as a classifier with all neurons in a fully connected layer being fully connected to all outputs of
the previous layer [9]. However, it is worth mentioning that training CNN from scratch requires large
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amounts of training data, which is not always available and can cause overfitting. Therefore, in this
study, pretrained CNN with appropriate fine-tuning will be utilized, as described in Section 4.2.

The CNN was implemented by using two popular types of pretrained CNN architectures, namely,
GoogLeNet [12], and AlexNet [13].

4.2. Pretrained Networks

A pretrained network has pretrained weights, which can be used in a related task. Chen et al.,
asserted that in order to use CNNs in domains where the limitation is the size of the dataset, pretrained
network may be the solution [40]. Additionally, training CNN from scratch is time-consuming
and needs an extensive amount of computational power and memory capacity. Numerous studies
considered using pretrained CNN and asserted that this type of CNN can improve accuracy in the
case of limited datasets [17,41,42]. Yosinski et al. [42] claimed that weights from a distant task may
achieve better performance than using randomly initialized weights.

In the literature, several pretrained CNN exist such as AlexNet, VGGNet, GoogLeNet,
and ResNet. However, GoogLeNet and AlexNet are usually applied for feature extraction and
classification and yield very good results. For example, they have been used in medical data
analysis, including anatomical applications [7,16,43], computed tomography [44], biomedical signal
processing [45,46], e.g., interstitial lung disease [6], GoogLeNet and AlexNet were also used in
recognition of malaria-infected cells, where GoogLeNet and AlexNet achieved 98.13% and 95.79%
accuracy, respectively. Traditional machine learning tools, including SVM, obtained an accuracy of
91.66% [4]. Inspired by the superior performance of these two CNNs, the current research investigates
the best configuration of these two widely used CNNs for ulcer detection and classification.

The pretrained networks were fine-tuned by freezing the weights of the first layers—i.e.,
the weights of the frozen layers were not adjusted during system training—whereas the fully connected
layers, responsible for mapping the feature representations extracted by the initial layers into the class
label information, were fine-tuned.

All the weights in the fully connected layers were initialized with random values and trained
using the stochastic gradient descent (SGD) algorithm.

GoogLeNet: In 2014, GoogLeNet was the winner of the ImageNet Large-scale Visual Recognition
Challenge (ILSVRC), an annual competition that measures developments in object recognition and
classification [12]. GoogLeNet achieved an error rate of 6.7%, when used with inception modules,
which have various sizes of convolution layers. Figure 1 shows the inception modules used to build
the network.
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Figure 1. GoogLeNet architecture. Symbols Ci refer to convolution layers, Pi refer to pooling layers
and FCi refer to fully connected layers.

With GoogLeNet, each layer works as a filter. This configuration enhances the abilities of
GoogLeNet in detecting the best features in images. The first layers detect common features, including
blobs, edges, and colors. The last layers detect high-level features.
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In this work, GoogLeNet was retrained to recognize ulcer images by adding four new layers to
its structure, specifically, a dropout layer with a 50% probability of dropout, a fully connected layer,
a softmax layer and a classification-output layer. The number of outputs of the fully connected layer
was set to 2, corresponding to the classes of normal and abnormal (i.e., ulcer). Figure 1 illustrates the
layers of GoogLeNet. In the experiments, a total of 144 layers were used to build GoogLeNet.

AlexNet: Alex Krizhevsky et al. [13] designed a large, deep convolutional neural network, known as
AlexNet. The network has 11× 11, 5× 5, 3× 3, convolution, max pooling, dropout, and fully connected
layers, as illustrated in Figure 2. There are ReLU activation functions after every convolutional and
fully connected layer. The dropout layer has a 50% probability of dropout. The first layers act as
feature extractors to determine the high-level features. AlexNet has 25 layers, which is fewer than
those in GoogLeNet.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 16 

 

In this work, GoogLeNet was retrained to recognize ulcer images by adding four new layers to 

its structure, specifically, a dropout layer with a 50% probability of dropout, a fully connected layer, 

a softmax layer and a classification-output layer. The number of outputs of the fully connected layer 

was set to 2, corresponding to the classes of normal and abnormal (i.e., ulcer). Figure 1 illustrates the 

layers of GoogLeNet. In the experiments, a total of 144 layers were used to build GoogLeNet. 

AlexNet: Alex Krizhevsky et al. [13] designed a large, deep convolutional neural network, known as 

AlexNet. The network has 11 × 11, 5 × 5, 3 × 3, convolution, max pooling, dropout, and fully 

connected layers, as illustrated in Figure 2. There are ReLU activation functions after every 

convolutional and fully connected layer. The dropout layer has a 50% probability of dropout. The 

first layers act as feature extractors to determine the high-level features. AlexNet has 25 layers, 

which is fewer than those in GoogLeNet. 

 

Figure 2. AlexNet architecture with five convolutional and max pooling layers and three fully 

connected layers for ulcer image detection. 

To address the problem of ulcer detection, AlexNet required modification. One of the fully 

connected layers, Layer 23, was modified to have the same size as the number of classes and the 

classification output layer, Layer 25, contained the name of the loss function that was used to train 

the network. Let X be a set of WEC images, let S_sen, S_Sp, S_ac, and S_AUC be elements of the sets 

of sensitivity, specificity, accuracy, and area under the curve, respectively. The proposed 

methodology is depicted in Algorithm 1. 

Algorithm 1. 

∀ x ∈X, ∃ i ∈ X: i resize of x 

Let G be GoogLeNet a pretrained network ∈CNN 

Let A be AlexNet a pretrained network ∈CNN 

Let M be a set of measures: M = {Accuracy, Sensitivity, Specificity, Loss, AUC} 

∀ G & A∈CNN, ∃ m | m[Sensitivity] = {S_sen: S_sen ⇒CNN(x)} 

& m[Specificity] = {S_sp:   S_sp ⇒CNN(x)} 

& m[Accuracy]= {S_ac: S_ac⇒CNN(x)} 

& m[AreaUnderCurve] = {S_AUC: S_AUC ⇒CNN(x)} 

5. Experiments and Results 

This section describes the experiments carried out to evaluate the two types of CNN in ulcer 

detection using WCE images. The process is illustrated in Figure 3. The performance of each CNN 

was evaluated using six types of evaluation metrics: sensitivity, specificity, accuracy, loss, time cost, 

and area under curve (AUC). The first two metrics were computed by finding the number of true 

positives, true negatives, false positives, and false negatives. True positives (TP) are correctly 

detected abnormalities (ulcers). True negatives (TN) are correctly detected normalities (non-ulcers). 

False positives (FP) and false negatives (FN) are the numbers of incorrect detections of normalities 

and abnormalities, respectively. The AUC was used to evaluate the performance of the CNN and 

Figure 2. AlexNet architecture with five convolutional and max pooling layers and three fully connected
layers for ulcer image detection.

To address the problem of ulcer detection, AlexNet required modification. One of the fully
connected layers, Layer 23, was modified to have the same size as the number of classes and the
classification output layer, Layer 25, contained the name of the loss function that was used to train the
network. Let X be a set of WEC images, let S_sen, S_Sp, S_ac, and S_AUC be elements of the sets of
sensitivity, specificity, accuracy, and area under the curve, respectively. The proposed methodology is
depicted in Algorithm 1.

Algorithm 1.

∀ x ∈X, ∃ i ∈ X: i resize of x
Let G be GoogLeNet a pretrained network ∈CNN
Let A be AlexNet a pretrained network ∈CNN
Let M be a set of measures: M = {Accuracy, Sensitivity, Specificity, Loss, AUC}
∀ G & A∈CNN, ∃m | m [Sensitivity] = {S_sen: S_sen⇒CNN(x)}
& m[Specificity] = {S_sp: S_sp⇒CNN(x)}
& m[Accuracy]= {S_ac: S_ac⇒CNN(x)}
& m[AreaUnderCurve] = {S_AUC: S_AUC⇒CNN(x)}

5. Experiments and Results

This section describes the experiments carried out to evaluate the two types of CNN in ulcer
detection using WCE images. The process is illustrated in Figure 3. The performance of each CNN was
evaluated using six types of evaluation metrics: sensitivity, specificity, accuracy, loss, time cost, and area
under curve (AUC). The first two metrics were computed by finding the number of true positives, true
negatives, false positives, and false negatives. True positives (TP) are correctly detected abnormalities
(ulcers). True negatives (TN) are correctly detected normalities (non-ulcers). False positives (FP)
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and false negatives (FN) are the numbers of incorrect detections of normalities and abnormalities,
respectively. The AUC was used to evaluate the performance of the CNN and showed the probability
of correctly identified positive instances, which were abnormal instances with higher identification
than randomly chosen negative instances, the normality instance in this case.

The five metrics are computed as

Sensitivity = TP/(TP + FN) (1)

Specificity = TN/(TN + FP) (2)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (3)

Loss = −Σ yj log (ŷi) (y is the true value and ŷi is the predicted value) (4)

AUC = 0.5 (Sensitivity + Specificity) (5)

Sensors 2019, 19, x FOR PEER REVIEW 7 of 16 

 

showed the probability of correctly identified positive instances, which were abnormal instances 

with higher identification than randomly chosen negative instances, the normality instance in this 

case. 

The five metrics are computed as 

Sensitivity = TP/(TP + FN) (1) 

Specificity = TN/(TN + FP) (2) 

Accuracy = (TP + TN)/(TP + TN + FP + FN) (3) 

Loss = −Σ yj log (�̂�i) (y is the true value and �̂�i is the predicted value) (4) 

AUC=0.5 (Sensitivity + Specificity) (5) 

 

Figure 3. Schematic diagram of the overall system for ulcer detection. 

The training options were also modified. The size of the mini-batch, which is a subset of the 

training set to be used in each iteration of the experiment, was set at 20. The maximum number of 

epochs for training was set at 10. Three learning rate values were explored, i.e., [0.01, 0.001, 0.0001], 

in order to evaluate the most appropriate setting. The root mean square propagation was used as an 

optimizer for both CNN networks utilized in the experiments. 

The simulations were ran using MATLAB 2018. For the purposes of reproducibility, the 

networks were trained in a standalone system with an Intel Core Processor i7-7500U CPU at 2.70 

GHz, 2904 MHz, 2 cores, and 64 GB of RAM. 

5.1. Dataset 

The images used in the experiments were taken from [43]. The dataset consists of 1875 images 

captured using WCE video, which included 1525 instances of ulcers and 250 instances of the normal 

class. These images were recorded from two parts of the digestive system, i.e., esophageal and 

gastric. Figure 4 shows sample ulcer images. 

The first step in analyzing the WCE images was dividing them randomly into training and 

testing sets. 80% of the images, i.e., 421 images, were used for training, and the rest, i.e., 105 images, 

were used for testing as recommended in [44]. The training set contained 256 abnormal and 80 

normal images, while the test set contained 80 abnormal and 25 normal images. 

The original images had a resolution of 256 × 256 × 3 (256 width, 256 height, 3 color channels). 

To fit GoogLeNet, the images were resized to 224 × 224 × 3 pixels, wherein for AlexNet, the images 

are resized to 227 × 227 × 3 pixels. 

Figure 3. Schematic diagram of the overall system for ulcer detection.

The training options were also modified. The size of the mini-batch, which is a subset of the
training set to be used in each iteration of the experiment, was set at 20. The maximum number of
epochs for training was set at 10. Three learning rate values were explored, i.e., [0.01, 0.001, 0.0001],
in order to evaluate the most appropriate setting. The root mean square propagation was used as an
optimizer for both CNN networks utilized in the experiments.

The simulations were ran using MATLAB 2018. For the purposes of reproducibility, the networks
were trained in a standalone system with an Intel Core Processor i7-7500U CPU at 2.70 GHz, 2904 MHz,
2 cores, and 64 GB of RAM.

5.1. Dataset

The images used in the experiments were taken from [47]. The dataset consists of 1875 images
captured using WCE video, which included 1525 instances of ulcers and 250 instances of the normal
class. These images were recorded from two parts of the digestive system, i.e., esophageal and gastric.
Figure 4 shows sample ulcer images.

The first step in analyzing the WCE images was dividing them randomly into training and testing
sets. 80% of the images, i.e., 421 images, were used for training, and the rest, i.e., 105 images, were used
for testing as recommended in [44]. The training set contained 256 abnormal and 80 normal images,
while the test set contained 80 abnormal and 25 normal images.

The original images had a resolution of 256 × 256 × 3 (256 width, 256 height, 3 color channels).
To fit GoogLeNet, the images were resized to 224 × 224 × 3 pixels, wherein for AlexNet, the images
are resized to 227 × 227 × 3 pixels.
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5.2. Results

In the experiments, CNN receive an input image, process it and categorize it in two categories
(i.e., normal, abnormal (ulcer)). Tables 1 and 2 summarize the evaluations of GoogLeNet and AlexNet,
in the classification of WCE images. Table 3 shows the run times for the pretrained CNN classifiers used
in these experiments. Figures 5–12 illustrate the performance of GoogLeNet and AlexNet, respectively.
Both figures show the training progress over the epochs for both CNN.

Table 1. Performance of GoogLeNet for training and testing data set with three different learning rates.

Performance Measurements
LR = 0.0001 LR = 0.001 LR = 0.01

Training Set Testing Set Training Set Testing Set Training Set Testing Set

Accuracy 100% 100% 100% 97.143% 73.33% 76.19%
Loss 1.0093 × 10−6 8.6569 × 10−8 0.0298 0.001 2.7444 2.1683

Sensitivity 1 1 1 1 0.73 0.76
Specificity 1 1 1 1 0 0

AUC 1 1 1 0.9864 0.50 0.50

Table 2. Performance of AlexNet with Lr = [0.0001, 0.001, 0.01].

Performance Measurements
LR = 0.0001 LR = 0.001 LR = 0.01

Training Set Testing Set Training Set Testing Set Training Set Testing Set

Accuracy 100% 100% 100% 100% 73.33% 76.19%

Loss 3.9736 × 10−8 3.1221 × 10−8 3.9736 ×
10−8

8.5150 ×
10−8 1.0933 3.7958

Sensitivity 1 1 1 1 0.73 0.76
Specificity 1 1 1 1 0 0

AUC 1 1 1 1 0.50 0.50

Table 3. Runtime costs for the learning process of the CNNs (in minutes).

Learning Rate LR = 0.0001 LR = 0.001 LR = 0.01

AlexNet 18:37 14 08:09
GoogleNet 37:41 35:22 33:21

From Table 1, it can be observed that the performance of GoogLeNet with 0.01 learning rate
achieved less than 77% accuracy. It can be noticed that the lower results are obtained with learning
rates of 0.01 and 0.001. It further shows that the networks are not able to successfully detect classes
based on the sensitivity and specificity metrics in Table 2, while the performance of the network
increases, when the learning rate decreases. Therefore, it is shown that loss is not mitigated when the
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learning rate increases. If a very small learning rate is selected, the loss function starts reducing in the
first few iterations, as illustrated in Figure 7. This shows that the samples of each class are detected
correctly, based on the results of Table 1. As it can be seen, the sensitivity and specificity were both
100%. Figure 7 shows that the network is stopped after 440 iterations. As shown in the first epoch,
the network achieved 100% accuracy, after which it was unstable until epoch 14. Then, it obtained
100% accuracy and its performance was stable until the maximum iteration was reached. Figure 8
shows the ROC curves of the performance of GoogLeNet on the testing data set with learning rates of
0.01, 0.001, and 0.0001.
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Regarding the AlexNet network, Figures 9–11 show the training process of AlexNet with the
three choices for the learning rate parameter. The performance of the AlexNet also varied depending
on the choice of learning rate. From Table 2, it can be observed that AlexNet achieved the highest
performance when the learning rate is very small. Consequently, the sensitivity and specificity were
also 100%. As Figure 10 shows, AlexNet obtained 100% accuracy at iteration 350, and its performance
remained stable until the end of the training procedure. The time required for AlexNet to reach the
final iteration was much less than that required by GoogLeNet, as shown in Table 3. In addition,
the best CNN performance with the least time was obtained with a learning rate of 0.001. Despite the
achievements of both CNNs, the learning process is not stable when using higher learning rates. As can
been observed from Figures 7 and 11, GoogLeNet and AlexNet show stability in the learning process
with a 0.001 learning rate despite the slow convergence.

Other evaluation metrics, including the sensitivity for both CNNs, reached 100%. This means that the
CNNs successfully predicted the true positive instances of the abnormality class. They also successfully
predicted the true negative instances of the normality class. In addition, the study analyzed the receiver
operating characteristics to test the classification performance. The curves in Figures 8 and 12 demonstrate
a balanced trade-off between the sensitivity and the specificity for both CNNs.

6. Discussion

The experiments aimed at detecting ulcers in WCE images by applying two CNN architectures,
namely GoogLeNet and AlexNet. The images in this study were identical to those used in [31].
Tables 1–3 provide a summary of the performance results. The validation accuracy and losses were
calculated from the last layers of AlexNet and GoogLeNet.

The CNNs were used to automatically detect ulcer regions in WCE images, obviating the need for
preprocessing in order to prepare the images for classification. Table 3 summarizes the performance of
the two CNN architectures in terms of runtime. It shows that AlexNet outperformed GoogLeNet by
requiring 18:37 min for training, compared to 37:41 min for GoogLeNet. This translates to AlexNet
requiring approximately half the time for training. This may be due to the large number of layers in
GoogLeNet. However, these computational times were less when compared to traditional machine
learning methods, where analysts usually spend more time and effort in understanding the images [33].
Moreover, this requires the evaluation and ranking of a large number of features, so as to choose
the appropriate ones for the classification task. Feature extraction and selection are accomplished
automatically using CNNs.

Based on the results, it is concluded that a high learning rate of 0.01 does not provide satisfactory
results for both GoogLeNet and AlexNet. Analysis of the loss curve under the various experimental
setups, as shown in Figures 7 and 11, demonstrated that both CNNs achieved 100% accuracy with a
learning rate of 0.0001. Moreover, as shown in Figure 10, AlexNet also provides 100% accuracy with a
learning rate of 0.001. This is the best result achieved so far in ulcer image analysis, when compared
to the application of state-of-the-art machine learning techniques, including deep neural networks,
as shown in Table 4. We provide an extensive comparison of our results to those of traditional machine
learning tools. For example, Bchir et al. [31] achieved 96% accuracy using SVMs. They attempted to
extract new features by analyzing textures. In addition, Iakovidis and Koulaouzidis [48] investigated
an automated way to detect lesion images, achieving 95% sensitivity. Szczypiński et al. [29] used a
feature extractor based on color, which achieved 95% accuracy in both sensitivity and specificity. In all
these studies, the results obtained were unsatisfactory owing to irrelevant features extracted from the
WCE images that led to misclassification. Vasilakakis [49] asserted that this might be related to the
significantly lower resolution of WCE images, which limits the visibility of the texture, thus affecting
the amount and quality of discriminative information. More importantly, the database used in the
present study contained not only instances of ulcers but also several other types of abnormalities,
including for example, vascular lesions, for which texture may not be as discriminative as color [11].
In terms of the use of deep learning networks, previous studies, including Seguia et al. [35] used their
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designed CNN in the analysis of WCE images. Their CNN achieved 96% accuracy. Fan et al., achieved
95.16% accuracy and 96% sensitivity [10].

Table 4. Comparison of state-of-the-art machine learning techniques in WCE images.

References Data Type Classifiers Result

[31] Ulcer images SVM 96% sensitivity
[35] Small bowel CNN The accuracy is 96%
[10] Ulcer images AlexNet 96% sensitivity
[33] Bleeding images CNN 99% in F measure
[32] Inflammatory gastrointestinal disease CNN with SVM The accuracy is 90%
[14] Polyps images SSAEIM The accuracy is 98%
[50] Ulcer images SVM 97.68% sensitivity
[24] Ulcer, bleeding images SVM 98% sensitivity

To further evaluate the effectiveness of the proposed methodology using CNN, we performed
further simulation studies using multilayer perceptrons (MLP) with the same datasets to benchmark
the proposed neural network architectures as shown in Table 5. It can be observed that the best
performance achieved on the test dataset was 85% using color histograms and LBP.

Table 5. Simulation results for the use of multilayer perceptrons in WCE image ulcer detection.

Performance Measurements
CIE_lab Color Histogram Local Binary Pattern Color Coherence Vector

Training Set Testing Set Training Set Testing Set Training Set Testing Set

Accuracy 83.7% 85% 85.199.6% 85% 77.3%% 76.5%
Loss 0.1530 0.1495 0.1467 0.1469 0.3115 0.3267

Sensitivity 97.5% 98.9% 99.1% 98.9% 90% 89.1%
Specificity 0% 0% 0% 0% 0% 0%

AUC 33.68% 34.67% 36.45% 32.85% 60.41% 59.96%

However, the results of the present study showed that CNNs have the ability to automatically
extract and evaluate a set of the optimal features. This is related to the numbers of layers in the
CNN architecture and the fact that the present tests were designed to identify the features that help
to distinguish between the two classes. To conclude, the viability of the two pretrained CNNs for
ulcer detection was fully demonstrated in terms of specificity, sensitivity, accuracy, AUC, and loss.
Furthermore, comparison experiments showed that the two pretrained CNNs outperform state-of-
the-art methods for ulcer detection, paving the way for the development of a computer-aided diagnosis
system for ulcer detection.

7. Conclusions

In recent years, deep learning has been at the forefront of research and technological efforts
in automated analysis and recognition and has delivered significant improvements compared to
traditional machine learning algorithms. Based on their performance, deep learning methods are
considered by many researchers to be credible candidates for automated detection and diagnosis of
abnormalities in a variety of medical images.

The novelty of this research lies in illustrating the use of pretrained CNN models for recognizing
ulcer regions in WCE images. GoogLeNet and AlexNet models were pretrained on a subset of the
ImageNet database to determine the best combination of network parameters that can enable these two
CNNs to detect the occurrence of ulcers with high accuracy. Despite the limited number of data, both
architectures demonstrated zero classification error with 100% accuracy for the identified combination
of network parameter settings.

Although it was time-consuming, the experiments illustrated the excellent performances of
both CNN models and demonstrated their potential in automated analysis of medical images.
The promising detection rates by GoogleNet and AlexNet, in the context of the state-of-the-art results,
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are expected to reinforce their use in ulcer classification in WCE images. Furthermore, for the first
time, an attempt was made to fine-tune pretrained CNNs for ulcer detection, which has the potential
to pave the way for employing pretrained CNNs within a CAD system for accurate diagnosis.

Finally, based on the performance results of the CNNs, conclusive insights can be generalized to
analyzing WCE images for other types of diseases.
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1. Cireşan, D.C.; Giusti, A.; Gambardella, L.M.; Schmidhuber, J. Mitosis Detection in Breast Cancer Histology
Images with Deep Neural Networks. In Proceedings of the International Conference on Medical Image
Computing and Computer-assisted Intervention, Nagoya, Japan, 22–26 September 2013; pp. 411–418.

2. Deng, L.; Yu, D. Deep learning: Methods and applications. Found. Trends® Signal Process. 2014, 7, 197–387.
[CrossRef]

3. Dong, Y.; Jiang, Z.; Shen, H.; Pan, W.; Williams, L.; Reddy, V.; Benjamin, W.; Bryan, A. Evaluations of deep
convolutional neural networks for automatic identification of malaria infected cells. In Proceedings of
the IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Orlando, FL, USA,
16–19 February 2017; pp. 101–104.

4. Esteva, A.; Kuprel, B.; Novoa, R.; Ko, J.; Swetter, S.; Blau, H.; Thrun, S. Dermatologist-level classification of
skin cancer with deep neural networks. Nature 2017, 542, 115. [CrossRef] [PubMed]

5. Hoo-Chang, S.; Holger, R.; Mingchen, G.; Le, L.; Ziyue, X.; Isabella, N.; Jianhua, Y.; Daniel, M.;
Ronald, M.S. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset
characteristics and transfer learning. IEEE Trans. Med. Imag. 2016, 35, 1285.

6. Khan, S.; Yong, S.P. A Deep Learning Architecture for Classifying Medical Images of Anatomy Object.
In Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and
Conference (APSIPA ASC), Kuala Lumpur, Malayasia, 12–15 December 2017; pp. 1661–1668.

7. Wolterink, J.M.; Leiner, T.; de Vos, B.; van Hamersvelt, R.W.; Viergever, M.A.; Išgum, I. Automatic coronary
artery calcium scoring in cardiac CT angiography using paired convolutional neural networks.
Med. Image Anal. 2016, 34, 123–136. [CrossRef] [PubMed]

8. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.;
Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017,
42, 60–88. [CrossRef]

9. Fan, S.; Xu, L.; Fan, Y.; Wei, K.; Li, L. Computer-aided detection of small intestinal ulcer and erosion in
wireless capsule endoscopy images. Phys. Med. Biol 2018, 63, 165001. [CrossRef] [PubMed]

10. Xu, Y.; Mo, T.; Qiwei, F.; Zhong, P.; Lai, M.; Chang, E. Deep Learning of Feature Representation with Multiple
Instance Learning for Medical Image Analysis. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 1626–1630.

11. Szegedy, C.; Liu, W.; Jia, Y.; Sermant, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

12. Krizhevsky, A.; Sutskever, I.; Hinton, G. Image Net Classification with Deep Convolutional Neural
Networks. In Proceedings of the Advances in neural information processing systems, Lake Tahoe, NV, USA,
3–6 December 2012; pp. 1097–1105.

13. Yuan, Y.; Meng, M. Deep learning for polyp recognition in wireless capsule endoscopy images. Med. Phys.
2017, 44, 1379–1389. [CrossRef]

http://dx.doi.org/10.1561/2000000039
http://dx.doi.org/10.1038/nature21056
http://www.ncbi.nlm.nih.gov/pubmed/28117445
http://dx.doi.org/10.1016/j.media.2016.04.004
http://www.ncbi.nlm.nih.gov/pubmed/27138584
http://dx.doi.org/10.1016/j.media.2017.07.005
http://dx.doi.org/10.1088/1361-6560/aad51c
http://www.ncbi.nlm.nih.gov/pubmed/30033931
http://dx.doi.org/10.1002/mp.12147


Sensors 2019, 19, 1265 15 of 16

14. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241.

15. Tajbakhsh, N.; Gurudu, S.R.; Liang, J. Automatic Polyp Detection in Colonoscopy Videos Using an Ensemble
of Convolutional Neural Networks. In Proceedings of the IEEE 12th International Symposium on Biomedical
Imaging (ISBI), New York, NY, USA, 16–19 April 2015; pp. 79–83.

16. Linder, T.; Jigin, O. Organ Detection and Localization in Radiological Image Volumes. Master’s Thesis,
Linköping University, Linköping, Sweden, 9 June 2017.

17. Adler, D.G.; Gostout, C.J. Wireless capsule endoscopy. Hosp. Physician 2003, 39, 14–22.
18. Fireman, Z.; Glukhovsky, A.; Jacob, H.; Lavy, A.; Lewkowicz, S.; Scapa, E. Wireless capsule endoscopy.

IMAJ-RAMAT GAN 2002, 4, 717–719.
19. Ojala, T.; Pietikäinen, M. Unsupervised texture segmentation using feature distributions. Pattern Recognit.

1999, 32, 477–486. [CrossRef]
20. Gevers, T.; Smeulders, A.W. Color-based object recognition. Pattern Recognit. 1999, 32, 453–464. [CrossRef]
21. Shafer, S.A. Using color to separate reflection components. Color Res. Appl. 1985, 10, 210–218. [CrossRef]
22. Finlayson, G.D.; Hordley, S.D.; Tastl, I. Gamut constrained illuminant estimation. Int. J. Comput. Vis. 2006,

67, 93–109. [CrossRef]
23. Liaqat, A.; Khan, M.A.; Shah, J.H.; Sharif, M.; Yasmin, M.; Fernandes, S.L. Automated ulcer and bleeding

classification from WCE images using multiple features fusion and selection. J. Mech. Med. Biol. 2018,
1850038. [CrossRef]

24. Li, B.; Meng, M. Texture analysis for ulcer detection in capsule endoscopy images. Image Vis. Comput. 2009,
27, 1336–1342. [CrossRef]

25. Charfi, S.; El Ansari, M. Computer-aided diagnosis system for colon abnormalities detection in wireless
capsule endoscopy images. Multimed. Tools Appl. 2018, 77, 4047–4064. [CrossRef]

26. Li, B.; Meng, M. Ulcer Recognition in Capsule Endoscopy Images by Texture Features. In Proceedings of the
7th World Congress on Intelligent Control and Automation, WCICA, Chongqing, China, 25–27 June 2008;
pp. 234–239.

27. Souaidi, M.; Abdelouahed, A.; El Ansari, M. Multi-scale completed local binary patterns for ulcer detection
in wireless capsule endoscopy images. Multimed. Tools Appl. 2018, 1–18. [CrossRef]
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