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Abstract

It is known that design of elastic cloaks is much more challenging than the design idea
for acoustic cloaks, cloaks of electromagnetic waves or scalar problems of anti-plane shear. In
this paper, we address fully the fourth-order problem and develop a model of a broadband
invisibility cloak for channelling flexural waves in thin plates around finite inclusions. We
also discuss an option to employ efficiently an elastic pre-stress and body forces to achieve
such a result. An asymptotic derivation provides a rigorous link between the model in
question and elastic wave propagation in thin solids. This is discussed in detail to show
connection with non-symmetric formulations in vector elasticity studied in earlier work.

Keywords: Cloaking, Flexural waves, Metamaterials, Asymptotics, Elasticity

1 Introduction

There is a theoretical and practical interest in wave cloaking in the context of metamaterials, as
outlined in the publications [1–8]. Dynamic effects include anisotropy and localization [9, 10],
which can be be interpreted in the context of the homogenization theory. In this regard, we
would like to refer to the work [11–13] addressing the notion of an effective dynamic mass den-
sity in structured composites and acoustic materials, as well as analytical studies of dynamic
localization in phononic crystals. The approach of the dynamic homogenization has been sys-
tematically applied in [14, 15] to vibrations of inertial lattice systems. The idea of a so-called
“geometric optics” transformation leading to a radially symmetric “push-out” cloak, is com-
monly used for computational and experimental implementation [1,16–19]. In scalar problems,
where the governing equation is reduced to Helmholtz form, such a transformation proves to
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be extremely efficient, leading to a model of a specially designed highly anisotropic inhomoge-
neous material occupying the cylindrical cloaking layer and channeling incident waves around
a finite scatterer (an inclusion or a void). The continuum model of an invisibility cloak leads
to singular behaviour of the theoretical material at the inner boundary of the cloaking region
adjacent to the scatterer. In a practical implementation, a continuum cloak is replaced by a
micro-structured composite, and examples of such implementation include water waves [8],
flexural plates [18] and acoustics [20]. This micro-structure makes the cloak approximate,
and such an approximation is frequency sensitive. A special challenge is presented for vector
problems of elasticity discussed in [4, 7, 16, 21].

The present paper addresses cloaking for flexural waves in Kirchhoff elastic plates. Firstly,
we show that the governing equations are not invariant with respect to the radial “push-out”
transformation [3, 22]. This observation implies that the cloaking design procedure, well de-
veloped for acoustics, vibration of elastic membranes and anti-plane shear problems (see, for
example, [23, 24]), does not apply to problems of flexural vibrations of elastic plates. Elas-
tic Kirchhoff plates possess flexural rigidity and their out-of-plane vibrations are governed
by a fourth-order partial differential equation. One of the main challenges appears to be the
presence of propagating and evanescent waves representing solutions of the Helmholtz and
modified Helmholtz equations, and the coupling of such waves via the boundary and inter-
face contact conditions. In numerical simulations, it is apparent that in many configurations
the flexural waves are led by their Helmholtz component (see, for example, [25, 26]). How-
ever, for cloaking problems the multi-scale nature of a metamaterial makes the problem more
challenging and it is not apparent that such decoupling is possible.

There is strong experimental evidence, as published in [18] and also outlined in [27], that
within a predefined frequency range a by-pass system can be implemented around a finite
obstacle in a flexural Kirchhoff plate. Such a by-pass system is evidently an approximate
cloak, that would benefit strongly from an in-depth analysis paving the way to a broadening
of the frequency range for the cloaking effect.

We explain the derivation of such an approximate cloaking model and present illustrative
numerical examples which agree with the experimental evidence [18].

The paper [19] has shown, for a model of a square cloak, that a formulation for flexural
waves in a Kirchhoff plate, after the cloaking transformation, includes additional terms in the
governing equation; these may represent in-plane body forces and pre-stress. This approach
provides a consistent procedure justifying the additional terms in the governing equation and
cloaking is effective across the whole frequency range admissible for the plate model. Mo-
tivated by results of [19], we also develop the full cloaking model for the radial “push-out”
transformation, and obtain explicit closed form representation for the pre-stress required to
have a broadband cloak for flexural waves.

Finally, we present a detailed asymptotic analysis, which establishes a connection between
the transformed equations for the fourth-order model of flexural waves and those for a vector
problem of elasticity in thin solids.

2 Application of the radial “push-out” transformation to a Kirchhoff-
Love plate

We begin with a simple case of the equation governing the out-of-plane displacement ampli-
tude w(X) of an orthotropic homogeneous plate, in the absence of applied in-plane forces,
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under pure bending. As in [28], the fourth-order partial differential equation is

DR
∂4w
∂R4 +

2
R2 DRΘ

∂4w
∂R2∂Θ2 + DΘ

1
R4

∂4w
∂Θ4 +

2
R

DR
∂3w
∂R3 −

2
R3 DRΘ

∂3w
∂R∂Θ2 −

1
R2 DΘ

∂2w
∂R2

+
2

R4 (DΘ + DRΘ)
∂2w
∂Θ2 +

1
R3 DΘ

∂w
∂R
− ρhω2w = 0, (1)

where DR, DΘ and DRΘ are the flexural rigidities, ρ and h are the mass density per unit volume
and thickness of the plate, respectively, and ω is the angular frequency.

The constitutive relations that define the moments are

MR = −DR

[
∂2w
∂R2 + νΘ

(
1
R

∂w
∂R

+
1

R2
∂2w
∂Θ2

)]
,

MΘ = −DΘ

(
1
R

∂w
∂R

+
1

R2
∂2w
∂Θ2 + νR

∂2w
∂R2

)
,

MRΘ = −2DK
∂

∂R

(
1
R

∂w
∂Θ

)
, (2)

where νR and νΘ are the values of the Poisson’s ratios in the radial and tangential directions
respectively. We also note that DK = 1

2 (DRΘ − DRνΘ), and the rigidities DR and DΘ satisfy
the following symmetry relation

DRνΘ = DΘνR. (3)

Further, if the plate is isotropic and homogeneous, then the equation (1) will have DR =
DΘ = DRΘ = D(0) where D(0) is the flexural rigidity of the isotropic plate, so that equation of
motion (1) simplifies to

D(0)∆2w− ρhω2w = 0. (4)

Consider the radial invertible “push-out” transformation, introduced in [1–3, 22]. Within
R1 < r < R2, the transformation x = F (X) is given by

r = R1 +
(R2 − R1)

R2
R, θ = Θ, when 0 ≤ R ≤ R2, (5)

where X = (R, Θ)T and x = (r, θ)T .
The Jacobi matrix F in cylindrical coordinates (r, θ, z) has the form

F =
R2 − R1

R1
er ⊗ er +

R2 − R1

R1

r
r− R1

eθ ⊗ eθ , (6)

where er = eR, eθ = eΘ is the orthonormal basis and ⊗ stands for the dyadic product.
By direct application of the transformation or alternatively a double application of [23,

Lemma 2.1] the isotropic equation, in new polar coordinates, may be expressed as

(r− R1)
2

r2
∂4w
∂r4 +

2
r2

∂4w
∂r2∂θ2 +

1
r2(r− R1)2

∂4w
∂θ4 +

2(r− R1)

r2
∂3w
∂r3 −

2
r2(r− R1)

∂3w
∂r∂θ2

− 1
r2

∂2w
∂r2 +

4
r2(r− R1)2

∂2w
∂θ2 +

1
r2(r− R1)

∂w
∂r
−

ρR4
2(r− R1)

2

D(0)r2(R2 − R1)4
hω2w = 0. (7)
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Letting

D′r = D(0) (r− R1)
2

r2 , D′rθ = D(0) and D′θ = D(0) r2

(r− R1)2 , (8)

equation (7) may be re-written as

D′r
∂4w
∂r4 +

2
r2 D′rθ

∂4w
∂r2∂θ2 +

1
r4 D′θ

∂4w
∂θ4 +

2
r

D′r
r

(r− R1)

∂3w
∂r3 −

2
r3 D′rθ

r
(r− R1)

∂3w
∂r∂θ2

− 1
r2 D′θ

(r− R1)
2

r2
∂2w
∂r2 +

2
r4 (D′θ + D′rθ)

2r2

r2 + (r− R1)2
∂2w
∂θ2

+
1
r3 D′θ

(r− R1)

r
∂w
∂r
−

ρR4
2(r− R1)

2

r2(R2 − R1)4 hω2w = 0. (9)

If we introduce the notation ρ′ = ρR4
2/(R2 − R1)

4 for the normalised mass density, then it
is tempting to assume that (9) represents an orthotropic inhomogenous plate with the stiffness
rigidities (8). The question is: can such an assumption be justified?

On one hand, the fourth-order terms in (9) agree with the structure of (1). On the other
hand, the additional lower-order terms have to be analysed.

We also note that, after the normalisation, equation (7) can be written in the compact form

∇̂2
R1
(∇̂2

R1
w)−

ρR4
2

D(0)(R2 − R1)4
hω2w = 0, (10)

where the differential operator ∇̂2
R1

is defined as

∇̂2
R1

=
1

r− R1

∂

∂r

[
(r− R1)

∂

∂r

]
+

1
(r− R1)2

∂2

∂θ2 . (11)

We would like to emphasise that for R1 > 0, the operators ∇̂2
R1

and ∇2 are not the same. The
operator ∇̂2

R1
will be referred to as the ‘shifted Laplace operator’, which becomes the classical

Laplace’s operator only when R1 = 0, i.e. in the absence of the cloak. Correspondingly, we will
use the terms ‘shifted Helmholtz’ and ‘shifted modified Helmholtz’ for the operators ∇̂2

R1
+ β2

and ∇̂2
R1
− β2, respectively.

Following the representation (10) we can express the transformed equation in the form

∇̂2
R1
(∇̂2

R1
w)− β4w = (∇̂2

R1
+ β2)(∇̂2

R1
− β2)w = 0, (12)

where

β =
R2

R2 − R1

(
ρh

D(0)
ω2
)1/4

(13)

has the physical dimension of [m−1]. The solution of equation (12) admits the representation

w(r, θ) = wHS(r, θ) + wMS(r, θ), (14)

where
(∇̂2

R1
+ β2)wHS(r, θ) = 0, (∇̂2

R1
− β2)wMS(r, θ) = 0, (15)
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and hence w is the superposition of waves of shifted Helmholtz type wHS and shifted modified
Helmholtz type wMS. A semi-analytical solution can be found by implementing the series
representation

w(r, θ) =
+∞

∑
n=0

wn(r)einθ , (16)

where

wn(r) = An Jn[β(r− R1)] + EnH(1)
n [β(r− R1)] + Bn In[β(r− R1)] + FnKn[β(r− R1)]. (17)

In equation (17) Jn is the Bessel function, H(1)
n is the Hankel function, and In and Kn are the

modified Bessel functions related to Jn and H(1)
n by

In(z) = i−n Jn(iz), Kn(z) =
πin+1

2
H(1)

n (iz), (18)

respectively (see [29], equations 9.6.3 and 9.6.4). The coefficients of the expansion (16), (17) are
determined from the boundary and the interface conditions on the contour of the cloak.

3 Transformation cloaking for a membrane versus flexural plate

The radial “push-out” transformation (5) can be used to design a cloak that will route an
incident wave around a finite-size obstacle in an elastic membrane. Norris [23] has discussed
this problem in detail. The governing equation for a time-harmonic out-of-plane displacement
u of an elastic membrane has the form(

∇X · µ∇X + ρω2
)

u(X) = 0, X ∈ R2, (19)

where µ stands for the stiffness matrix and ρ and ω are the mass density and the radian
frequency, respectively. If an invertible mapping x = F (X) is applied within the cloaking
region, then the transformed equation becomes(

∇ · µC(x)∇+
ρω2

J(x)

)
u(x) = 0, (20)

where

C =
FFT

J
, F = ∇Xx, J = det F. (21)

It is important to note that equation (20), similar to (19), describes a vibrating membrane, but
with different elastic stiffness and a non-uniform distribution of mass across the transformed
region.

In contrast, for the model of a flexural plate, equation (9), after the transformation (5), does
not preserve the physical interpretation, i.e. it is no longer the equation of free vibrations of a
plate. This suggests that the problem in hand is very different from the model of a cloak for a
membrane. It presents an additional challenge to identify the physical configuration consistent
with the new equation (9). This issue is to be discussed in the next section.
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4 The cloaking transformation does not produce an orthotropic
inhomogeneous plate

We make a direct comparison between the transformed equation (9), and the equation for an
inhomogeneous orthotropic plate. Firstly, we note that the moments Mr, Mθ and Mθr satisfy
the partial differential equation:

∂2Mr

∂r2 +
2
r

∂Mr

∂r
+

2
r

∂2Mθr
∂r∂θ

+
2
r2

∂Mθr
∂θ

+
1
r2

∂2Mθ

∂θ2 −
1
r

∂Mθ

∂r
− ρh

∂2w
∂t2 = 0. (22)

For an orthotropic inhomogeneous plate, where rigidities and Poisson’s coefficients vary
radially, equation (22) has the form

Dr

(
∂4w
∂r4 +

2
r

∂3w
∂r3

)
+

2Drθ

r2

(
∂4w

∂r2∂θ2 −
1
r

∂3w
∂r∂θ2 +

1
r2

∂2w
∂θ2

)
+

Dθ

r2

(
1
r2

∂4w
∂θ4 +

2
r2

∂2w
∂θ2 −

∂2w
∂r2 +

1
r

∂w
∂r

)
+ 2

∂Dr

∂r

(
∂3w
∂r3 +

1
r

∂2w
∂r2

)
+

2
r2

∂Drθ

∂r

(
∂3w

∂r∂θ2 −
1
r

∂2w
∂θ2

)
+

1
r

∂(Drνθ)

∂r
∂2w
∂r2 −

1
r2

∂Dθ

∂r

(
∂w
∂r

+
1
r

∂2w
∂θ2

)
+

∂2Dr

∂r2
∂2w
∂r2 +

1
r

∂2(Drνθ)

∂r2

(
∂w
∂r

+
1
r

∂2w
∂θ2

)
+ ρh

∂2w
∂t2 = 0. (23)

Direct comparison of (23) and (9) shows that the fourth order terms agree in the equation
of the orthotropic plate and the transformed equation within the cloaking region. However,
a discrepancy occurs in other lower order terms, and hence the transformed equation (9)
does not represent a classical orthotropic Kirchhoff plate. Additional physical constraints are
needed to complete the model. This will be achieved through an approximation discussed in
the next section.

5 The cloaking approximation

Equation (23) can be rewritten after the substitution of flexural rigidity coefficients as in (8):

(r− R1)
2

r2
∂4w
∂r4 +

2
r2

∂4w
∂r2∂θ2 +

1
(r− R1)2r2

∂4w
∂θ4 +

2(r2 − R2
1)

r3
∂3w
∂r3 −

2
r3

∂3w
∂r∂θ2

+
r4R1 + 2r3R2

1 − 6r2R3
1 + 6rR4

1 − r5 − 2R5
1 − 2νrr4R1

(r− R1)3r4
∂2w
∂r2

+2
(r− R1)(2r− R1)(r2 − rR1 + R2

1) + νrr2R1(2r + R1)

(r− R1)4r4
∂2w
∂θ2

+
r2 − R2

1 + 2νrR1(2r + R1)

r(r− R1)4
∂w
∂r
− ρhω2 r4

2(r− R1)
2

r2(R2 − R1)4 w = 0. (24)

Direct comparison with equation (7) shows the discrepancy in the third-order derivative terms
in addition to that in the lower-order terms. The difference between the left-hand sides of
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equations (7) and (24) is

2R1(r− R1)

r3
∂3w
∂r3 +

2R1

r3(r− R1)

∂3w
∂r∂θ2

−
R1
(
2R4

1 + 2r4 − 5r3R1 + 7r2R2
1 − 6rR3

1 + 2νrr4)
r4(r− R1)3

∂2w
∂r2

+
2R1

(
2νrr3 + νrr2R1 − r3 + 4r2R1 − 4rR2

1 + R3
1
)

(r− R1)4r4
∂2w
∂θ2

+
R1
(
4νrr2 + 2νrrR1 − 4rR1 + 3r2 + R2

1
)

r2(r− R1)4
∂w
∂r

. (25)

It is apparent that all coefficients in the above equation have the form f j(r)R1/r, with f j being
smooth functions when r > R1, and these coefficients are small when R1/r is considered as
a small parameter, in particular, when the penetration depth for the incident wave into the
cloaking region is small.

In the approximation implemented here, we chose the parameters of the cloak in such a way
that the interior diameter of the cloaking ring is sufficiently small compared to the diameter
of the whole cloaking region and compared to the wavelength of the incident wave, i.e. the
following non-dimensional quantities are small

R1/R2 � 1, βR1 � 1,

where β is defined by (13). The material outside the cloak remains unaffected by the transfor-
mation, whereas the interior material represents a radially orthotropic plate in the framework
of the approximation described here (see equations (24), (25)). Numerical simulations below
show the efficiency of our concept, which is also in agreement with the experimental evidence
published in [18].

5.1 Numerical illustration

The notion of an approximate cloak, introduced above, is used here in the numerical illustra-
tions. This approximation is valid for a certain choice of geometrical parameters and frequency
values.

Numerical simulations are produced for an elastic, isotropic Kirchhoff plate which contains
a radially orthotropic inhomogeneous cloaking layer. Without loss of generality, the incident
field is represented by a flexural plane wave propagating horizontally. Perfectly matched layers
(PML) are used on the exterior boundary of the computational domain. PML conditions are
“absorbing” boundary conditions simulating a non-reflective exterior contour. The parameters
used for the numerical simulations are shown in table 1. The exterior of the cloak corresponds
to a homogeneous isotopic plate, whereas the interior of the cloak is an inhomogeneous radi-
ally orthotropic plate. The numerical simulations were produced using Comsol Multiphysics®

(see Appendix A for more details on the numerical implementation).
In figure 1, we consider the case of interior and exterior radii for the cloaking region chosen

as R1 = 0.2 and R2 = 2. The normalised radian frequency is ω = 40. Part (a) of figure 1 shows
the uncloaked inclusion, and part (b) of the same figure shows the cloaked coated inclusion,
where the shadow region has been significantly suppressed. Part (c) of figure 1 shows the
flexural displacement, for cases (a) and (b) together with the field in the absence of both cloak

7



Parameter Value
Exterior of the cloak Interior of the cloak

D(0) 1 1

Dr 1 (r−R1)
2

r2

Dθ 1 r2

(r−R1)2

Drθ 1 1
νr 0.3 0.3
νθ 0.3 3r4

10(r−R1)4

ρ 1 R4
2(r−R1)

2

r2(R2−R1)4

h 0.001 0.001

Table 1: The parameters used in the numerical simulations, see (8).

and inclusion; here the field is plotted along a line passing through the centre of the inclusion
in the direction of the incident wave. For this choice of parameters, we observe good cloaking
of a finite object for the incident plane flexural wave.

It is also expected that the approximation is frequency sensitive, and the properties of the
approximate cloak may also change with the variation of the thickness of the cloak. This is
illustrated in figure 2. In part (a) of that figure, the simulation corresponds to the case of a
higher frequency (ω = 200), and the cloaked obstacle shows a non-suppressed shadow. Simi-
larly, in part (b) of figure 2 we have non-suppressed shadow for a different reason. Although
the frequency of the incident wave remains the same as in figure 1, the size of the obstacle
has increased and the interior radius of the cloak is twice as large as the case in figure 1(b).
Consequently, in both diagrams shown in figure 2 the cloaking has been affected.

6 Alternative approach: plate subjected to in-plane forces and
pre-stress

In this section we show that, by choosing a different normalisation, it is possible to give a
physical interpretation of the transformed plate equations as a Kirchhoff plate subjected to
in-plane forces in addition to the usual flexural behavior. This can also lead to a broadband
perfect cloak. Here, we extend the cartesian formulation given recently in Colquitt et al. [19]
to the cylindrical cloak configuration. In particular, equations (7) and (10) are normalised in
the following way

D(0) r− R1

r
∇̂2

R1
(∇̂2

R1
w)−

ρR4
2(r− R1)

r(R2 − R1)4 hω2w =

D(0)
[

r− R1

r
∂4w
∂r4 +

2
r(r− R1)

∂4w
∂r2∂θ2 +

1
r(r− R1)3

∂4w
∂θ4 +

2
r

∂3w
∂r3 −

2
r(r− R1)2

∂3w
∂r∂θ2

− 1
r(r− R1)

∂2w
∂r2 +

4
r(r− R1)3

∂2w
∂θ2 +

1
r(r− R1)2

∂w
∂r

]
−

ρR4
2(r− R1)

r(R2 − R1)4 hω2w = 0. (26)
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(a) Uncloaked rigid inclusion (b) Cloaked rigid inclusion

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−8 −6 −4 −2 0 2 4 6 8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

w

 

 

Intact Uncloaked Cloaked

(c)

Figure 1: The flexural displacement w(x) generated by a line source in the far field. Parts (a) and (b)show the field for an uncloaked and cloaked rigid inclusion respectively. Part (c) shows the flexural dis-placement for cases (a) and (b) together with the flexural displacement in the absence of both inclusionand cloak along a line passing through the centre of the inclusion in the direction of the incident wave.The rigid inclusion is indicated by the grey rectangle in part (c). The non-dimensional radian frequency
ω = 40 and the radii of the cloak and inclusion are R2 = 2 and R1 = 0.2, respectively.
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(a) Higher frequency regime (b) Larger R1/R2 ratio
Figure 2: The flexural displacement w(x) generated by a line source subject to the scattering by thecoated rigid inclusion. In the cases shown the coating does not provide cloaking. In part (a), the incidentwave has a larger frequency than in figure 1: the non-dimensional radian frequency is ω = 200. In part(b), the frequency of the incident wave is the same as in figure 1 (ω = 40), but the ratio of the interiorand exterior radii of the coating has doubled: in the present case R2 = 2 and R1 = 0.4. Cloaking hasbeen affected in these two cases. The colour range is as indicated in figure 1.

Then, introducing the following definition for the rigidity and inertial parameters

Dr = D(0) r− R1

r
, Dθ = D(0)

(
r

r− R1

)3
, Drθ = D(0) r

r− R1
,

νθ = ν−1
r =

(
r

r− R1

)2
, ρ′ =

ρR4
2(r− R1)

r(R2 − R1)4 , (27)

the equations (22) and (23), for an inhomogeneous orthotropic plate, match all the terms in-
volving fourth-, third- and zero-order derivatives of the transverse displacements in equation
(26). The remaining terms (second- and first-order) can finally be matched by considering
additional pre-stress forces N and in-plane body forces S, having components

Nrr =
3r− 2R1

r(r− R1)3 R1, Nθθ = − 3rR1

(r− R1)4 , Nrθ = 0,

Sr =
3R1

r(r− R1)3 , Sθ = 0. (28)

These are constrained to satisfy the in-plane balance equation

∇ ·N + S = 0. (29)

The final form for the transformed equation is

∇ · (∇ ·M) + N : ∇∇w− S · ∇w = −ρ′hω2w. (30)
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leading to a consistent physical interpretation. In Colquitt et al. [19], for a different cloak
geometry, we have shown that such a pre-stressed elastic system leads to broadband cloaking.

We would like to note the resemblance of the above computations in figures 1 and 2 with
those in paper [18], which shows results from an experimental study of a structured cloak and
flexural waves. In [18] the cloaking approximation is shown to be frequency sensitive, so that
cloaking does not occur for frequencies above a certain threshold. From (1)–(3), it is clear that
four independent elastic parameters Dr, Dθ , Drθ , and νr are required to characterise a radially
orthotropic plate (also see the classical papers [30,31]). Only Young’s moduli Er and Eθ appear
to be given in paper [18].

The inertial properties are defined by the mass density which is also required for the com-
putations and experiment. Different normalisation of the mass density can be applied; in
particular, the mass density used in [18, 32] was constant. Here we have defined all of the
required parameters and explained how they fit into the configuration approximating the flex-
ural cloak. We have also given the range of validity of such an approximation.

7 Asymptotic derivation of the transformed plate equation from
the equations of elasticity

In this section, the transformed equations of motion for the Kirchhoff plate (10) are deduced
directly from the transformed equations of motion of three-dimensional linear elasticity. An
asymptotic model is implemented in order to obtain the lower-dimensional plate model from
the analysis of a thin three-dimensional solid. It was shown in earlier works [4, 7, 16] that
the transformed equations of elasticity are subject to the choice of gauge. In particular, the
resulting material may lack the minor symmetries in the constitutive equations. This does not
occur in the case of flexural plates, as demonstrated below.

7.1 Transformed equation of elasticity

The Navier equations

(λ + 2µ)∇X(∇X ·U)− µ∇X × (∇X ×U) = ρ
∂2U
∂t2 (31)

describing the displacement field U = U(X, t) = (UR, UΘ, UZ)
T , with X = (R, Θ, Z)T , in a

linear elastic and isotropic medium can be conveniently expressed in cylindrical coordinates,
i.e.

(λ + µ)
∂

∂R
(∇X ·U) + µ

(
∇2

XUR −
UR

R2 −
2

R2
∂UΘ

∂Θ

)
= ρ

∂2UR

∂t2 ,

λ + µ

R
∂

∂Θ
(∇X ·U) + µ

(
∇2

XUΘ −
UΘ

R2 +
2

R2
∂UR
∂Θ

)
= ρ

∂2UΘ

∂t2 , X ∈ χ,

(λ + µ)
∂

∂Z
(∇X ·U) + µ∇2

XUZ = ρ
∂2UZ

∂t2 . (32)

In (32), χ = Ω× [−h/2, h/2], with Ω ⊆ R2, λ and µ are the Lamé moduli, ρ is the mass density
of the medium and zero body forces are assumed. . Field equations (32) are accompanied
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by homogeneous Neumann boundary conditions on the upper and lower external surfaces
Z = ±h/2:

µ

(
∂UR
∂Z

+
∂UZ
∂R

)
= 0,

µ

(
1
R

∂UZ
∂Θ

+
∂UΘ

∂Z

)
= 0,

λ

(
∂UR
∂R

+
1
R

∂UΘ

∂Θ
+

UR
R

)
+ (λ + 2µ)

∂UZ
∂Z

= 0, (33)

where (R, Θ) ∈ Ω.
Now, we introduce a geometric transformation

r = R1 +
(R2 − R1)

R2
R, θ = Θ, z = Z when 0 ≤ R ≤ R2. (34)

Accordingly, the Jacobi matrix F (in cylindrical coordinates) and the Jacobian J are given by

F = diag
[

R2 − R1

R2
,

R2 − R1

R2

r
r− R1

, 1
]

, J =
(R2 − R1)

2r
R2

2(r− R1)
. (35)

Then, Navier equations (32) transform into

λ+2µ

r

[
(r− R1)

∂2ur

∂r2 +
∂ur

∂r
− ur

r− R1

]
+

λ+µ

r

[
∂2uθ

∂r∂θ
+

R2(r− R1)

R2 − R1

∂2uz

∂r∂z

]
− λ + 3µ

r(r− R1)

∂uθ

∂θ
+

µ

r

[
1

r− R1

∂2ur

∂θ2 +
R2

2(r− R1)

(R2 − R1)2
∂2ur

∂z2

]
= ρ̂

∂2ur

∂t2 ,

λ+2µ

r(r− R1)

∂2uθ

∂θ2 +
λ+3µ

r(r− R1)

∂ur

∂θ
+

λ+µ

r

(
∂2ur

∂r∂θ
+

R2

R2 − R1

∂2uz

∂θ∂z

)
+

µ

r

[
(r− R1)

∂2uθ

∂r2 +
∂uθ

∂r
− uθ

r− R1
+

R2
2(r− R1)

(R2 − R1)2
∂2uθ

∂z2

]
= ρ̂

∂2uθ

∂t2 ,

(λ+2µ)
R2

2(r− R1)

(R2 − R1)2r
∂2uz

∂z2 +
λ+µ

r
R2

R2 − R1

[
(r− R1)

∂2ur

∂r∂z
+

∂2uθ

∂θ∂z
+

∂ur

∂z

]
+

µ

r

[
(r− R1)

∂2uz

∂r2 +
1

r− R1

∂2uz

∂θ2 +
∂uz

∂r

]
= ρ̂

∂2uz

∂t2 , (36)

where ρ̂ = ρ/J and R1 ≤ r ≤ R2. These correspond to an extension to the three dimensional
case of the equations given in [16]. Note that the identity gauge has been considered, i.e.
u(x, t) = U(X, t) where u = (ur, uθ , uz) and x = (r, θ, z).

Equations (36) are accompanied by transformed boundary conditions on the upper and
lower external surfaces z = ±h/2:

µ

(
∂ur

∂z
+

R2 − R1

R2

∂uz

∂r

)
= 0,

µ

(
R2 − R1

R2

1
r− R1

∂uz

∂θ
+

∂uθ

∂z

)
= 0, R1 ≤ r ≤ R2

λ
R2 − R1

R2

(
∂ur

∂r
+

1
r− R1

∂uθ

∂θ
+

ur

r− R1

)
+ (λ + 2µ)

∂uz

∂z
= 0. (37)
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7.2 Asymptotic model

In order to obtain the Kirchhoff plate model directly from the transformed equations of elas-
ticity (36) and (37) an asymptotic procedure for elliptic operators in thin domains is devel-
oped [33,34]. We introduce the scaled spatial variable ξ = z/ε, ε� 1, and we also assume that
the transverse displacement component depends on the scaled time variable T = ε t. Then, we
consider the following asymptotic approximation for the displacement vector u

u ≈
∞

∑
k=0

εk

{
ε−4

3

∑
q=0

εqv(q) + ε−2
1

∑
q=0

εqV (q) + W(k)

}
, (38)

where v(q) = (v(q)r , v(q)θ , v(q)ξ ), q = 0, 1, 2, 3, are functions of (r, θ, ξ, T) and V (q) = (V (q)r ,V (q)θ ,V (q)ξ ),
q = 0, 1, are functions of (r, θ, ξ, t). The two finite sums on the right-hand side of equation (38)
provide the solvability condition for W(0) = (W(0)

r , W(0)
θ , W(0)

ξ ) after substitution of the equa-

tion of motion (36) and boundary conditions (37). The solvability condition for W(0)
ξ constitutes

a well-posed problem for the transverse displacement field v(0)ξ describing the flexural behavior

of a thin plate. The solvability conditions for W(0)
r and W(0)

θ constitute a well-posed problem

for the in-plane displacement field V (0)r and V (0)θ describing the behavior of a thin shell. Here
interest is in the description of the plate model and we restrict attention to the asymptotic
procedure for v(0)ξ which will be indicated by v for ease of notation.

After the introduction of the scaled variable ξ, the equation of motion (36) and boundary
conditions (37) can be expressed in the form(

1
ε2L0 +

1
ε
L1 + L2

)
u = ε2ρ̂

∂2u
∂T2 (39)

in (R1 ≤ r ≤ R2, 0 ≤ θ < 2π,−H/2 ≤ ξ ≤ H/2), with H = h/ε, and(
1
ε

Σ0 + Σ1

)
u = 0 (40)

on (R1 ≤ r ≤ R2, 0 ≤ θ < 2π, ξ = ±H/2).
In equation (39)

L0 =
r− R1

r

(
R2

R2 − R1

)2


µ ∂2

∂ξ2 0 0

0 µ ∂2

∂ξ2 0

0 0 (λ + 2µ) ∂2

∂ξ2

 ,

L1 =
R2

R2 − R1

λ + µ

r


0 0 (r− R1)

∂2

∂ξ∂r

0 0 ∂2

∂ξ∂θ
∂
∂r

[
(r− R1)

∂
∂ξ

]
∂2

∂ξ∂θ 0

 ,

L2 =
1

r(r− R1)

 L
[11]
2 L[12]

2 0
L[21]

2 L[22]
2 0

0 0 µ(r− R1)
2∇̂2

R1

 , (41)

13



where

L[11]
2 = µ

∂2

∂θ2 + (λ + 2µ)

{
(r− R1)

∂

∂r

[
(r− R1)

∂

∂r

]
− 1
}

,

L[12]
2 = −(λ + 3µ)

∂

∂θ
+ (λ + µ)(r− R1)

∂2

∂r∂θ
,

L[21]
2 = (λ + 3µ)

∂

∂θ
+ (λ + µ)(r− R1)

∂2

∂r∂θ
,

L[22]
2 = (λ + 2µ)

∂2

∂θ2 + µ

{
(r− R1)

∂

∂r

[
(r− R1)

∂

∂r

]
− 1
}

(42)

and the differential operator ∇̂2
R1

is defined in equation (11).
For equation (40)

Σ0 =

 µ ∂
∂ξ 0 0
0 µ ∂

∂ξ 0
0 0 (λ + 2µ) ∂

∂ξ

 ,

Σ1 =
R2 − R1

R2


0 0 µ ∂

∂r

0 0 µ 1
r−R1

∂
∂θ

λ
(

∂
∂r +

1
r−R1

)
λ

r−R1
∂
∂θ 0

 . (43)

7.2.1 Hierarchical system of equations

A hierarchical system of equations is obtained by substituting the asymptotic representation
(38) into transformed field equations (36) complemented by the transformed boundary condi-
tions (37).

To leading order, the equations
L0v(0) = 0 (44)

with boundary conditions
Σ0v(0) = 0 (45)

are satisfied by

v(0) =

 0
0

v(r, θ, T)

 , (46)

where v does not depend on ξ and the solvability conditions are automatically satisfied.
To the next order, the field equations

L0v(1) + L1v(0) = 0 (47)

and boundary conditions
Σ0v(1) + Σ1v(0) = 0 (48)
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admit the solution

v(1) = −R2 − R1

R2


∂v
∂r

1
r−R1

∂v
∂θ

0

 ξ. (49)

Note that v(1), and v(2) and v(3) in the following, are complemented by the normalisation
condition of zero average along the thickness.

Next, the field equations
L0v(2) + L1v(1) + L2v(0) = 0 (50)

and boundary conditions
Σ0v(2) + Σ1v(1) = 0 (51)

give

v(2) =

(
R2 − R1

R2

)2
 0

0
∇̂2

R1
v

 λ

λ + 2µ

(
ξ2

2
− H2

24

)
. (52)

For the following order, we have the equations

L0v(3) + L1v(2) + L2v(1) = 0 (53)

accompanied by the boundary conditions

Σ0v(3) + Σ1v(2) = 0 (54)

and the corresponding solution is

v(3) =

(
R2 − R1

R2

)3


∂
∂r

(
∇̂2

R1
v
)

1
r−R1

∂
∂θ

(
∇̂2

R1
v
)

0

 (3λ + 4µ)ξ3/6− (11λ + 12µ)ξH2/24
λ + 2µ

. (55)

is defined in equation (11).
Finally, the vector function W(0) satisfies the equation

L0W(0) + L1v(3) + L2v(2) = ρ̂
∂2v(0)

∂T2 (56)

together with the boundary conditions

Σ0W(0) + Σ1v(3) = 0. (57)

In particular, W(0)
ξ solves the problem

∂2W(0)
ξ

∂ξ2 = −
(

A1
ξ2

2
− A2

H2

24

)
∇̂2

R1
(∇̂2

R1
v) +

ρ

λ + 2µ

∂2v
∂T2 = F, |ξ| < H/2 (58)

with

A1 =

(
R2 − R1

R2

)4 3λ + 2µ

λ + 2µ
, A2 =

(
R2 − R1

R2

)4 11λ2 + 24λµ + 12µ2

(λ + 2µ)2 , (59)
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subjected to boundary conditions

∂W(0)
ξ

∂ξ

∣∣∣∣∣∣
ξ=± H

2

= ±
(

R2 − R1

R2

)4 λ (λ + µ)

(λ + 2µ)2
H3

6
∇̂2

R1
(∇̂2

R1
v) = p±. (60)

The solvability condition ∫ H/2

−H/2
Fdξ = p+ − p− (61)

is the fourth-order differential equation(
R2 − R1

R2

)4 Eh3

12(1− ν2)
∇̂2

R1
(∇̂2

R1
v) + ρh

∂2v
∂t2 = 0, (62)

where E is the Young’s modulus, ν the Poisson’s ratio and H and T have been replaced by h/ε
and ε t, respectively.

Identifying the flexural rigidity D(0) with the coefficient Eh3/(12(1− ν2)) it is straightfor-
ward to check that equations (10) and (62), restricted to time-harmonic regime, are the same.

8 Conclusions

There are different ways of reducing the shadow generated by a scatterer. In particular, an
elementary example where a “heavy” inclusion is surrounded by a “lighter” isotropic coating
was discussed in [35]. That model requires the average mass density of the inclusion and coat-
ing together to be the same as the mass density of the ambient matrix. Such examples have
been known for more than a century (see, for example, [36]). It is important to mention that
a combination of a heavy inclusion and a lighter coating cannot be associated with an “invisi-
bility cloak”, but instead can be used to reduce the monopole source term in the asymptotics
at infinity.

In [18] the use of micro-structured material for cloaking represented a substantial advance.
That work has demonstrated that cloaking of a flexural wave is possible, although such a
cloaking approximation is frequency dependent. In the present paper, we have provided a full
theoretical background for such an approximation and have also discussed the range of its
applicability.

Furthermore, by referring to pre-stressed elastic plates, we have resolved a long-standing
problem of creating an exact cloak for flexural waves. For the cloaking region obtained as
a result of a “push-out” radially symmetric transformation, we have identified a full set of
parameters, including pre-stress and in-plane body forces. In the case when pre-stress and
body forces are not included in the model, an approximation of the cloak has been developed
for R1/R2 � 1 and within the frequency range when βR1 � 1. The illustrative numerical
computations show excellent agreement with the prediction of the theoretical model and the
existing experimental results.

The transformed equations of three-dimensional vector elasticity were analysed asymptot-
ically for a thin solid. The resulting lower-dimensional model agrees fully with the outcome
of the direct application of the radial “push-out” transformation to the equation of motion of
a Kirchhoff plate. It is also noted that ‘transformed’ material in three-dimensional elasticity
has non-symmetric constitutive relations, as outlined in [16], but the lower-dimensional model

16



for the plate does not have such a feature. The physical nature of the reduced model is fully
explained, with the introduction of pre-stress and in-plane body forces, which have been iden-
tified in explicit closed form. Implementation of the proposed model could lead to a new
generation of lightweight and highly-efficient structured shields and filtering devices.
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A Appendix: Kirchhoff plate versus Mindlin model in the nu-
merical implementation

The commercial finite element software Comsol Multiphysics® was used to produce the nu-
merical simulation presented in §5.1. In Comsol, plates are implemented using the Mindlin-
Reissner model [37,38] accounting for the shear deformation through the thickness of the plate.
The equation governing the flexural displacement of a homogeneous isotropic Mindlin plate
is (

∇2 +
ρ

G
∂2

∂t2

)(
D∇2 − ρh3

12
∂2

∂t2

)
w + ρh

∂2w
∂t2 = 0, (63)

where ρ is the density, G is the shear modulus, D is the flexural rigidity, h is the thickness of
the plate, and w is the flexural displacement. On the other hand, the corresponding equation
for a Kirchhoff-Love plate is D∇4w + ρhẅ = 0. Assuming that D ∼ O(1) and ρh ∼ O(1) we
observe that equation (63), approximately, reduces to the governing equation for the Kirchhoff-
Love plate provided that ρ/G � 1 and ρh3 � 1. Thus, using a judicious choice of parameters,
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the additional terms in (63) introduced by accounting for the variation of the shear defor-
mation through the thickness of the plate can be neglected. In this way, the Kichhoff-Love
plate equation may be simulated using finite element models built using the Mindlin-Reissner
Comsol package. A more detailed comparison of the dynamics of Kirchhoff-Love and Mindlin
plates can be found in [39].

0 0.2 0.4 0.6 0.8 1
−0.04

−0.02

0

0.02

0.04

 

 

Analytical
Comsol

(a) w

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 10

−3

 

 

Analytical
Comsol

(b) Mr

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

 

 

Analytical
Comsol

(c) Mθ

Figure 3: The analytical solution for a radially orthotropic Kirchhoff-Love plates (solid blue line) com-pared with the numerical solution for Mindlin plates (dashed red line). The numerical values used were
Dθ = 12.3, Dr = 1.25, νθ = 0.876, νr = 0.0890, h = 0.001 and G ≈ 1010.

For the purpose of the numerical simulations presented in §5.1, the shear modulus was
chosen as G ≈ 1010 and h = 1× 10−3, while all other parameters were chosen as unity. In
order to verify this approach, Comsol’s Mindlin plate model was used to compute a static
verification model. In particular, we consider the Green’s function for a homogeneous radially
orthotropic circular plate of radius R2 with clamped boundaries. This problem was considered
for Kirchhoff-Love plates in [40] §82 (see also [31]) and has the following analytical solution

w(R) =
R2

2
4πDR(1− η2)(1 + η)

[
1− η + (1 + η)

(
R
R2

)2
− 2

(
R
R2

)1+η
]

,

MR =
1

2π(1− η2)

[
(η + νΘ)

(
R
R2

)η−1
− (1 + νΘ)

]
,

MΘ =
η2

2π(1− η2)

[
(1 + ηνR)

(
R
R2

)η−1
− (1 + νR)

]
,

MRΘ = 0. (64)

where η =
√

DΘ/DR. Figure 3 shows the agreement between the analytical solution for
Kirchhoff-Love plates and the numerical solution produced using Comsol for Mindlin plates.
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