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Abstract 

 

Training loads are monitored in sports as part of a process which aims to enhance performance 

whilst simultaneously reducing the risk of injury. Although physiological loads have been 

investigated extensively, biomechanical loading is still poorly quantified and, therefore, largely 

unexplored. Ground reaction force (GRF) is a well-established measure of external whole-body 

biomechanical loading, which drives and contributes to the internal stresses on e.g. muscles, 

tendons and bones. GRF might thus be used to further understand the relationship between 

whole-body biomechanical loads and performance and injuries, but valid methods for accurately 

estimating GRF outside laboratory settings are currently unavailable. However, since GRF is 

determined by the accelerations of the body’s different segments, currently popular body-worn 

accelerometers might allow for estimating GRF in the field. Therefore, the aim of this thesis was 

to investigate if GRF can be estimated from segmental accelerations, especially for dynamic and 

high-intensity running tasks that are frequently performed during running-based sports.   

The first two studies showed that a two mass-spring-damper model can be used to accurately 

reproduce overall GRF profiles and impulses for various high-intensity running tasks, but that 

this model cannot be used to predict GRF from trunk accelerometry. These results suggest that 

trunk accelerations alone are insufficient to accurately predict GRF in this manner, but additional 

information about accelerations of other segments allows for alternative approaches to be 

explored. Therefore, the third study aimed to estimate GRF from multiple segmental 

accelerations using a direct mechanical approach. GRF profiles from full-body segmental 

accelerations were estimated reasonably across dynamic and high-intensity running tasks, but 

errors substantially increased when the number of segments was reduced. Since these results 

further support the suggestion that one or several segmental accelerations are unlikely sufficient 

to estimate whole GRF waveforms, the fourth study aimed to identify key segmental 

contributions to distinct GRF features using principal component analysis. However, this study 

showed that dominant segmental acceleration characteristics and associated GRF features, as 

well as the relative importance of these features, are highly complex and task-specific. 
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Together these findings show that it is unlikely that one or several segmental accelerations can 

provide accurate and meaningful estimates of GRF across different running activities. These 

outcomes warrant caution when using body-worn accelerometers to estimate GRF and monitor 

whole-body biomechanical loads during running-based sports in the field.  
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Chapter 1:  General introduction 
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Sport outcomes are largely determined by the training an athlete has been exposed to. Training 

loads are, therefore, monitored to enhance performance whilst reducing the risk of injury. This 

practice of training load monitoring has developed rapidly since the mid-1970s and is a well-

established and widely applied concept amongst sport-scientists, coaches and practitioners 

today. However, training load measures predominantly aim to quantify and assess the 

physiological demands of training and/or competition. The biomechanical loads athletes 

experience on the other hand, are still poorly quantified and are, therefore, relatively unexplored 

and not well understood (Vanrenterghem et al., 2017). Since the external and internal forces 

working on the different hard- and soft-tissues of the body are known to damage these structures, 

sound measures of biomechanical load are required to further investigate the underlying 

mechanisms of musculoskeletal injuries in running-based sports.  

For a biomechanical load measure to be useful for training load monitoring practice, there are 

three essential components to consider: biomechanical meaning, feasibility for field-based 

measurement, and validity and reliability of these measurements. Given the interdependence of 

these requirements, biomechanical load monitoring can be described as a multi-layered sphere 

(figure 1.1) of which researchers and practitioners should aim to reach the core. 

Biomechanical meaning. First, it is essential that the measured variable is 

biomechanically meaningful. For example, heart-rate can be used to assess metabolic 

training loads but cannot quantify the forces acting on the musculoskeletal system. 

Field-based measurements. Secondly, it is crucial that the variable can be measured in 

the field on a daily basis. For example, muscle and tendon stresses can be estimated 

using motion capture, force platform and musculoskeletal modelling techniques, but 

these are not typically available in the field, are laborious and time consuming, and thus 

unfeasible to be used outside laboratory settings. 

Validity and reliability. Thirdly, consistently accurate measurements are required. For 

example, overuse injuries are the result of small repetitive structure-specific loads (on 
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e.g. muscles, bones), and the accumulation of excessive measurement inaccuracies can 

considerably limit a metric’s usability. 

In short, training load metrics used for biomechanical load monitoring require a biomechanically 

meaningful foundation, should allow for day-to-day measurement outside laboratory settings, 

and need sufficient measurement validity and reliability. However, the multifactorial nature of 

these requirements makes measuring and evaluating biomechanical loads in running-based 

sports highly complex. 

Figure 1.1 The multi-layered biomechanical load sphere, in which the core reflects 

biomechanically meaningful, field-based, and valid and reliable biomechanical load 

measurements. Current accelerometry derived load measures are easily measurable in the field 

but have limited biomechanical meaning, while biomechanical research relies on relevant load 

metrics but is primarily laboratory based. 

Current load monitoring methods use accelerometry-based load measures such as PlayerLoad or 

Body Load to quantify the overall (external) biomechanical loads on the body (Boyd et al., 2011; 

Ehrmann et al., 2016). These metrics are typically derived from accelerometers embedded in 

trunk-worn GPS devices, which are commonly used in running-based sports. Consequently, 

trunk acceleration-based variables are easily measurable in the field and have also been shown 

to have reasonable reliability and validity (Barrett et al., 2015, 2014). However, a biomechanical 
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underpinning of these load metrics is yet lacking and hence, their biomechanical meaning and 

usefulness is questionable. Therefore, despite their field-based nature, accelerometry derived 

load measures are thus at the surface of the biomechanical load sphere (figure 1.1). 

Biomechanical research relies heavily on the precise quantification of forces acting in and on 

the body during movement (Winter, 2009). These forces are typically measured directly with 

force platforms (external forces) or can be estimated in combination with kinematics measured 

from three-dimensional motion capture systems (internal forces) (Damsgaard et al., 2006; Seth 

et al., 2018). These techniques thus allow for valid and reliable measurement of biomechanically 

meaningful variables. However, force platform and motion capture technologies are not 

typically available in field settings (e.g. running track, football pitch), which limits their use to 

laboratories only. Therefore, despite their biomechanical relevance and high accuracy, force 

measures are also at the surface of the biomechanical load measure sphere (figure 1.1). 

Researchers and practitioners use different measures of biomechanical load to evaluate the 

musculoskeletal demands of sports. Nevertheless, techniques for accurately and reliably 

measuring biomechanically meaningful metrics in the field are yet unavailable. However, given 

the direct relationship between forces and accelerations, as described by Newton’s second law 

(F=m∙a), accelerations of individual segments might allow for estimating forces acting in and 

on the body. With the current popularity of body-worn accelerometers especially, this might 

eventually allow for more meaningful biomechanical load monitoring in running-based sports. 

It is, however, still largely unexplored whether segmental accelerations can provide meaningful 

measures of biomechanical load in the field, while maintaining sufficient accuracy for their 

application. This thesis sets out to get to the core of this problem.  
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Chapter 2:  Literature review 

 

The aim of this review is to provide a summary of the existing literature associated with the 

topics of this thesis. First, the concept of monitoring training loads in sports will be explained 

and its importance emphasised. Several training load aspects will be discussed including the 

load-adaptation paradigm and the differentiation between internal/external and 

physiological/biomechanical loads. Secondly, an overview of currently available methods for 

measuring and monitoring training loads in the field will be provided. The use of popular global 

positioning systems and accelerometers especially, will be discussed and the strengths and 

weaknesses of these technologies highlighted. Thirdly, the use of ground reaction forces as a 

measure of external whole-body biomechanical load will be introduced. The usefulness of 

ground reaction force measurements outside laboratory settings, as well as the shortcomings of 

current technologies to do this, will be explained. Fourthly, an overview of mass-spring models 

that have been used to predict and evaluate ground reaction forces in sport contexts will be 

presented. Several applications of these models, including their limitations, will be described 

and the novel use of a two mass-spring-damper model in a training load context will be 

presented. Finally, the aim and objectives of this thesis will be specified to set the scene for the 

studies described in the following chapters.         



 

6 
 

2.1 Training load monitoring 

Performance in sports is largely determined by the training an athlete has been exposed to. 

Systematic exposure to different training stimuli can lead to responses in the aerobic, 

cardiovascular and musculoskeletal system, which can lead to positive physical adaptations and 

ultimately enhanced sporting performance (figure 2.1 A). Distance running for example, has 

been shown to lead to an increased aerobic capacity (VO2 max) resulting in faster running times 

(Daniels et al., 1978). However, inadequate or excessive training loads, in combination with 

insufficient recovery times, could lead to no or even negative adaptations (maladaptation) and a 

reduced capacity to withstand training loads, causing an athlete to be at increased risk of injury 

or illness (Drew and Finch, 2016; Eckard et al., 2018; Kibler et al., 1992; Soligard et al., 2016; 

Windt and Gabbett, 2017) (figure 2.1 B). A well-designed training programme therefore requires 

a balanced periodization of adequate training frequency, volume and intensity to trigger positive 

adaptations, as well as sufficient recovery times (Bompa and Buzzichelli, 2019).  

Figure 2.1 A: Training stimuli followed by a sufficient recovery period leads to 

supercompensation and increased physical capacity/health. B: Insufficient recovery or 

excessive loads can lead to negative adaptations. These maladaptations can cause an athlete to 

have a reduced capacity/health to withstand training loads, and an increased risk of injury. (This 

figure was taken and adjusted from figures 1 and 2 in Soligard et al. (2016) and figure 2.1 in Meeusen and de Pauw 

(2013)). 
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Optimal training prescription mainly aims to enhance athletic performance, whilst 

simultaneously reducing the risk of injury. To achieve this, a thorough understanding of the 

applied stimuli and desired outcomes, as well as the dose-response relationships between these 

factors, is essential. Although this association between the training loads imposed on an athlete 

(dose) and the resulting physical reaction (response) is a well-established concept (Eckard et al., 

2018), dose-response relationships are often nonlinear and multifactorial, and therefore difficult 

to predict (McLaren et al., 2018; Weston, 2013). The importance of accurately quantifying the 

loads experienced during training, together with monitoring these loads over time, has therefore 

been highlighted as critical for attaining positive adaptations and subsequent performance 

improvements (Foster et al., 2001; Mujika, 2013). 

Training loads are monitored in sports as part of a process which aims to determine if and how 

(individual) athletes adapt to the prescribed training stimuli, predict performance, fitness and 

fatigue outcomes, and reduce the risk of injury and illness (Bourdon et al., 2017). Although 

simple measures of time, distance and heart-rate are known to have been used for training load 

monitoring purposes since the 1930s (Foster et al., 2017), the first attempts to describe the effects 

of physical training on athletic performance were made in the mid-1970s (Banister et al., 1975; 

Calvert et al., 1976). These authors suggested a training impulse (TRIMP) model based on 

systems theory to predict performance outcomes from several fitness and fatigue parameters. 

Over the last four decades, training load monitoring has rapidly gained popularity and numerous 

TRIMP-like approaches (Busso, 2003; Morton et al., 1990; Wood et al., 2005), as well as other 

models (Hellard et al., 2006; Hulin et al., 2016; Jobson et al., 2009; Noakes, 2000) have been 

suggested and applied to guide training programmes and predict performance, fitness and fatigue 

outcomes. Today, training load monitoring is a well-established and widely applied concept 

amongst sport-scientists (Bourdon et al., 2017), and perceived as beneficial and worthwhile by 

the majority of coaches and practitioners (Weston, 2018). 
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2.1.1 Load differentiation: external vs internal – physiological vs biomechanical 

Due to the recognised value of training load monitoring for evaluating specific dose-response 

relationships, together with the increased knowledge and technological improvements, an 

abundance of load measures have been used to assess the physical demands of training 

(Akenhead and Nassis, 2016; Cardinale and Varley, 2017; Mujika, 2017). This large amount of 

load metrics can, however, make it difficult to interpret and distinguish between the different 

aspects of training. Therefore, a separation between external load, which can be defined as the 

work and activities performed by the athletes, and internal load, which is the physiological stress 

induced by this training and is essential for mediating adaptations to exercise, has been suggested 

(Akubat et al., 2013; Impellizzeri et al., 2005). Since external loads are relatively easy to 

measure, external load metrics have been investigated for their ability to assess the more difficult 

to measure internal loading. For example, given the relationship between running volume and 

intensity, and energy expenditure, external measures of running distance, velocity and 

acceleration have been used to estimate and assess the internal metabolic demands of soccer 

training (Bangsbo et al., 2006; Gaudino et al., 2014). Moreover, simple and non-invasive rating 

of perceived exertion (RPE), which is the self-reported level of intensity of a training session, 

has been used to evaluate internal loads. RPE has been shown to be related to measures of 

external loading (Foster et al., 2001; McLaren et al., 2018) and has been used to assess the 

internal loading in various different sports (Casamichana et al., 2013; Gaudino et al., 2015; 

Impellizzeri et al., 2004; Lovell et al., 2013; McGuigan and Foster, 2004; Wallace et al., 2009; 

Weston et al., 2015).  

Besides internal and external aspects, training loads can be further differentiated into distinct 

physiological and biomechanical load-adaptation (or dose-response) pathways (Vanrenterghem 

et al., 2017). In this separation, the physiological loads include all the biochemical stresses of 

training that affect the state of the cardiovascular system (e.g. heart, lungs). Examples of internal 

physiological load parameters include heart rate, oxygen uptake and blood lactate, while 

metabolic power or distance covered describe the external loads. Biomechanical loading on the 

other hand, are the forces and stresses acting on/in the different hard- and soft-tissues of the body 
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(e.g. muscles, tendons, ligaments, bones, cartilage), typically resulting from the repetitive 

collisions with the ground, and pushing off during running. These musculoskeletal stresses can 

be quantified as either the external ground reaction forces, or the internal joint contact forces 

and muscle-tendon forces. In contrast to physiological measures, however, techniques to 

measure the biomechanical demands of training are still lacking and these loads are thus difficult 

to assess in the field. In short, therefore, differentiating between internal-external and 

physiological-biomechanical loads can allow for a more detailed and structured evaluation of 

the physical demands of training, providing that the loading characteristics of interest can be 

accurately quantified.   

2.2 Body-worn sensors 

To quantify numerous different loading parameters, body-worn sensors have quickly gained 

popularity in sports and exercise during recent years. In an annual survey of worldwide fitness 

trends, wearable technologies went from not being on the list in 2015 to being the most popular 

fitness trend in 2016, 2017 and 2019 (Thompson, 2018, 2016, 2015), and was in the top three in 

2018 (Thompson, 2017). Consequently, a wide range of body-worn sensors has become 

available for use in sports, including heart rate monitors (HRMs), near-infrared spectroscopy 

(NIRS), electromyographic (EMG) sensors, global positioning systems (GPS), and micro-

electrical mechanical systems (MEMS) or inertial measurement units (IMUs), such as 

accelerometers, magnetometers and gyroscopes (Camomilla et al., 2018; Cardinale and Varley, 

2017; Cummins et al., 2013; Düking et al., 2016). The commercial availability of these sensors 

at a relatively low cost provides athletes, coaches, practitioners and researchers with an 

abundance of information to assess training and fitness. Therefore, much research in the field of 

sport and exercise has focussed on the use of wearable technologies to quantify and monitor the 

internal and external training loads to which athletes are exposed. Body-worn GPS devices and 

accelerometers especially, have received a lot of attention for their ability to measure the external 

loads of training and competition. 
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2.2.1 Global positioning systems 

GPS is a satellite-based navigation network which provides measurements of location and time, 

which was originally developed by the American Department of Defence for military use. 

Technological improvements have, however, allowed for relatively cheap commercial 

availability of wearable GPS devices. As a result, GPS been introduced in a wide range of sports 

and has become increasingly popular to assess the external loads of training today. The compact 

GPS units (e.g. 95x52 mm for a Catapult OptimEye S5) are typically worn on the back of the 

upper trunk in a pocket of a tight-fitting vest (figure 2.2 A), and continuously measure an 

athlete’s positional data during training or competition. Since their first use in sports in the early 

2000s, GPS sampling frequencies have improved from 1 Hz in the original systems to 10 Hz or 

even 15 Hz today. With this increased sampling frequency the validity and reliability of GPS 

units has also improved considerably (Johnston et al., 2014; Rampinini et al., 2015; Scott et al., 

2015) and GPS devices have been shown to be an accurate and reliable means to measure total 

distance and running velocity (Coutts and Duffield, 2010; Johnston et al., 2014; Rampinini et 

al., 2015; Varley et al., 2012). Therefore, a wide variety of metrics including total distance 

covered, running velocity, accelerations and decelerations, and distance covered within specific 

speed and/or acceleration threshold zones are currently derived from GPS and used to assess 

external training loads (Akenhead and Nassis, 2016; Cummins et al., 2013). However, it has also 

been suggested that 10 Hz might be the optimum sampling frequency when using GPS in highly 

dynamic sports (Johnston et al., 2014; Scott et al., 2015), and that accuracy can be comprised 

for movements at higher speeds (e.g. accelerating >4 m·s-2) (Akenhead et al., 2014; Coutts and 

Duffield, 2010; Rampinini et al., 2015; Varley et al., 2012). The additional use of IMUs 

embedded in current GPS devices to assess training loads has, therefore, been explored. 
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Figure 2.2 A: A commercial GPS device (OptimEye S5, Catapult Innovations, Scoresby, 

Australia) with an in-built tri-axial accelerometer sampling at 100 Hz. GPS devices are 

typically worn in a tight-fitting vest on the back of the upper trunk. B: A tri-axial 

accelerometer (DTS 3D 518, Noraxon Inc, Scottsdale, AZ, USA) sampling at 1000 Hz. These 

units can be used for laboratory- or field-based research and can be attached to different body 

segments. 

2.2.2 Accelerometers 

Besides GPS, the use of IMUs to monitor training loads in sports has become increasingly 

popular. Technological developments have allowed IMUs to substantially reduce in size as well 

as cost, and most current GPS devices now contain built-in accelerometers, gyroscopes and/or 

magnetometers. Of these IMUs, sport scientists and practitioners have mainly focussed on the 

accelerometer, which provides a measure of acceleration in one (uni-axial) or three directions 

(tri-axial). These local accelerations provide a means to track real-time changes in velocity of 

the segment to which the unit is attached (figure 2.2 B) and are characterised by the frequency 

and intensity of the segmental movements. Since their first applications in human movement 
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studies in the 1950s, accelerometers have been used in laboratory based, as well as field studies, 

to analyse human gait (Saunders et al., 1953; Seel et al., 2014; Tao et al., 2012), quantify 

movement patterns (Cavagna et al., 1961; Kavanagh and Menz, 2008), monitor physical activity 

and energy expenditure (Bouten et al., 1994; Troiano et al., 2014), assess running mechanics 

(Buchheit et al., 2015; Lafortune, 1991; McGregor et al., 2009; Reenalda et al., 2016), estimate 

the physiological demands of running (McGregor et al., 2009; Murray et al., 2017), and detect 

and evaluate sport-specific movements (Blair et al., 2018; Chambers et al., 2015; Nedergaard et 

al., 2014). 

One of the main reasons for the recent growth in popularity of accelerometers in sports is that 

they overcome some limitations of GPS. Accelerometers do not require the use of a satellite, 

allowing their use indoors, and typically have a much higher sampling frequency (100 Hz or 

more) compared to GPS units. Despite studies that have questioned the reliability and validity 

of different types of accelerometers (Nicolella et al., 2018; Sperlich and Holmberg, 2016), other 

studies have shown these units to be reliable and accurate in a laboratory environment, as well 

as on the field (Boyd et al., 2011; Hollville et al., 2016; Kelly et al., 2015; Simons and Bradshaw, 

2016). In addition, accelerometers embedded within GPS devices have been found to provide 

valid measures of distinct acceleration characteristics such as the peak acceleration during 

walking, jogging and running (Rowlands and Stiles, 2012; Wundersitz et al., 2015a), jumping 

and landing tasks (Rowlands and Stiles, 2012; Simons and Bradshaw, 2016; Tran et al., 2010), 

and team sports movements (Wundersitz et al., 2015b). However, other findings suggest that 

certain GPS-embedded accelerometers might have a reduced reliability and validity when 

measuring the absolute acceleration magnitudes or peak accelerations, especially for movements 

at higher intensities (Kelly et al., 2015; Wundersitz et al., 2015a; Ziebart et al., 2017). 

In contrast to GPS, which measures an athlete’s global movements, accelerometry can be used 

to assess local segmental motion. Various studies have, therefore, investigated the ability of 

accelerometers to detect sport-specific actions and evaluate performance (Camomilla et al., 

2018; Chambers et al., 2015; Dellaserra et al., 2014). The aim of such research is to understand 
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specific movements in more detail and/or provide coaches with a tool to analyse and assess 

technique. Examples of sport-specific activity evaluations, includes the detection of tackles and 

physical collisions in rugby (Gabbett et al., 2010; Wundersitz et al., 2015c), bowling in cricket 

(McNamara et al., 2015) and throwing in baseball (Koda et al., 2010), quantification of kicking 

biomechanics in different football codes (Blair et al., 2018), classification of strokes and serves 

in tennis (Ahmadi et al., 2009; Connaghan et al., 2011), differentiation of swing patterns in golf 

(Lai et al., 2011), quantification of swimming technique (Beanland et al., 2014; Stamm et al., 

2013), and movement identification in snowboarding (Harding et al., 2008), cross-country skiing 

(Marsland et al., 2012) and running-based team sports (Nedergaard et al., 2014; Wundersitz et 

al., 2015d). Although most studies have focused on using a single unit, others have investigated 

the use of multiple accelerometers (e.g. Ahmadi et al. (2017), Lai et al. (2011)), or a combination 

of accelerometers with other IMUs (e.g. gyroscopes and magnetometers) (McNamara et al., 

2015; Wundersitz et al., 2015d). Despite the large number of studies that have shown the 

capability of accelerometers to provide information about specific actions in different sports, 

others have found contrasting results (Gabbett, 2013; Gastin et al., 2014; Mitschke et al., 2018; 

Ziebart et al., 2017). These authors have suggested that measured biomechanical parameters 

might be strongly dependent on the type of sensor, operating range and detection algorithms 

used. Similarly, Chambers et al. (2015) highlighted that the manufacturer and sampling rate of 

IMU devices used to detect sport-specific movements is a crucial factor for the quality of 

research and translation to the field. 

Several (trunk-) accelerometry derived training load measures have been used to assess external 

biomechanical loading. These parameters include PlayerLoad (Barrett et al., 2014; Boyd et al., 

2011; Scott et al., 2013), (New) Body Load (Ehrmann et al., 2016; Lovell et al., 2013; McLean 

et al., 2018; Weaving et al., 2014), Force Load (Colby et al., 2014) and Dynamic Stress Load 

(Gaudino et al., 2015). However, the measure that has arguably received the most of attention is 

PlayerLoad. This external load parameter is typically derived from accelerations measured at 

the back of the upper trunk and is defined as the square root of the sum of the squared rate of 

change of accelerations of the three accelerometer axes, scaled by a factor 100 and given in 
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arbitrary units. Some studies have found PlayerLoad to have a strong relationship with external 

load measures such as total distance covered (Casamichana et al., 2013; Gallo et al., 2015; 

Green, 2018; Polglaze et al., 2015; Scott et al., 2013), as well as internal load measures like 

oxygen uptake (VO2) and energy expenditure (Walker et al., 2016), heart rate (Barrett et al., 

2014) and ratings of perceived exertion (RPE) (Casamichana et al., 2013; Gallo et al., 2015; 

Scott et al., 2013). PlayerLoad has therefore been suggested to be used as a replacement for other 

load metrics that cannot be measured. For example, PlayerLoad might be used as a substitute for 

the total distance covered in situations where GPS is not available (e.g. indoor sport facilities), 

or to assess fatigue and/or injury risk (Akenhead et al., 2017; Barrett et al., 2016). However, 

other studies have suggested that PlayerLoad might not be an accurate loading metric for 

comparisons between different athletes due to its large inter-athlete variability (Barrett et al., 

2014), which might be due to differences in the way the accelerometers are worn. Differences 

in accelerometer fitting has for instance been found to strongly affect accumulated trunk-

accelerometry derived loads of running, agility and tackling activities (McLean et al., 2018). 

Moreover, it has also been suggested that lower-limb movement strategies cannot be well 

assessed and/or altered based on the PlayerLoad metric (Barrett et al., 2015, 2014), likely due to 

the placement of accelerometers between the Scapulae, and thus away from the lower limbs. For 

the same reason, caution should be taken when using PlayerLoad or similar accelerometry 

derived load measures from a single accelerometer as a measure of whole-body biomechanical 

loading, which is the result of the body’s centre of mass (CoM) movement and not the trunk or 

any other individual segment. 

2.3 Ground reaction forces 

Despite the abundance of currently available load metrics to assess the physical demands of 

training (Akenhead and Nassis, 2016), most parameters primarily aim to quantify physiological 

loads. Biomechanical load measures on the other hand, are still limited and have, therefore, been 

relatively unexplored (Vanrenterghem et al., 2017). Ground reaction forces (GRFs), resulting 

from the repetitive collisions with the ground during running, are a well-established measure of 

whole-body biomechanical loading. These external forces cause internal stresses to the different 
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hard- and soft-tissues of the body (Edwards, 2018; Loundagin et al., 2018; Scott and Winter, 

1990) and are known trigger several internal responses which play a critical role in the adaptation 

process of for instance bones (Frost, 1987; Rosa et al., 2015), muscles (Timmins et al., 2016; 

Wisdom et al., 2015) and tendons (Bohm et al., 2015; Wang et al., 2013), from the molecule to 

the organ. In the biomechanical load-response-adaptation pathway described by Vanrenterghem 

et al. (2017), external GRFs can thus be understood as the first step in a chain of internal 

responses, which lead to musculoskeletal (mal)adaptations (figure 2.3). GRF could, therefore, 

be a good candidate to further investigate the role of external biomechanical loading in relation 

to internal responses and adaptations, which might eventually be used in sports for a variety of 

purposes such as performance enhancement, injury prevention and rehabilitation.  
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Figure 2.3 The biomechanical load-response-adaptation chain with ground reaction forces as the 

external biomechanical load measure. (note: internal musculoskeletal responses and adaptations are 

examples and are not exhaustive). 
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2.3.1 Ground reaction forces as a measure of biomechanical loading 

To start with, measurement of GRF in the field could provide a novel tool for performance 

assessment and optimisation. For example, GRF profiles could be used to evaluate running 

technique, based on which athletes could be given direct technical feedback in the field to 

optimise their performance. Previous studies have shown that GRF might be used to assess and 

optimise sprint performance in (team sport) athletes (Bezodis et al., 2017; Hunter et al., 2005; 

Kugler and Janshen, 2010; Nagahara et al., 2017; Rabita et al., 2015), identify leg asymmetries 

in sprinters (Udofa et al., 2017), improve running economy (Heise and Martin, 2001; Kyröläinen 

et al., 2001; Moore, 2016) or reduce injury-related GRF loading characteristics in runners 

(Clansey et al., 2014; Willy et al., 2016). In addition, since the relationships between external 

and internal stresses are yet difficult to determine (McLaren et al., 2018; Weston, 2013), 

monitoring GRF could lead to a more in-depth understanding of the biomechanical dose-

response relationship. With GRF as an external measure of biomechanical loading, the 

relationship with internal responses of muscles, tendons, bones, ligaments and cartilage could 

be further explored, which would allow for investigating the required external biomechanical 

dose required to achieve the desired positive internal responses and adaptations. This might 

eventually aid the optimisation of training prescription and ultimately performance 

enhancements. 

Secondly, monitoring GRF and specific (injury-related) loading characteristics could help to 

identify abnormalities and the potential risk of injury. Numerous studies have suggested several 

aspects of the GRF to be related to musculoskeletal overuse injuries, including vertical impact 

force peaks (Cavanagh and Lafortune, 1980; Clement and Taunton, 1981; Grimston et al., 1993; 

Hreljac, 2004; Hreljac et al., 2000), vertical loading rates (Bredeweg et al., 2013; Davis et al., 

2016; Hreljac, 2004; Milner et al., 2006; van der Worp et al., 2016; Zadpoor and Nikooyan, 

2011a) and horizontal breaking forces (Gottschall and Kram, 2005; Napier et al., 2018). In 

addition, the magnitude of such loading characteristics has been shown to be directly affected 

by fatigue (Bazuelo-Ruiz et al., 2018; Christina et al., 2001; Degache et al., 2016; Grimston et 

al., 1994; Lazzer et al., 2015; Morin et al., 2011; Paquette and Melcher, 2017), while spectral 
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analyses of GRF profiles have been shown to be able to highlight (leg specific) running-induced 

fatigue in real-time (Halabi et al., 2017). Specific characteristics of the GRF, as well as the whole 

curve, could thus be used as markers to indicate whether an athlete is at increased risk of injury. 

Therefore, access to continuous measurements of GRF in applied sport settings would offer a 

powerful tool for injury prevention. 

Thirdly, monitoring and evaluating GRF as discussed above would provide further insight and 

understanding of the biomechanical demands of different tasks performed during training and 

competition. As a result, rehabilitation programmes and return-to-sport decisions can be based 

on whether an athlete is able to produce required forces and withstand biomechanical loads 

experienced during these activities. Based on their personal GRF data, athletes suffering from 

injury can be prescribed a sufficient biomechanical workload to strengthen the injured tissues, 

whilst avoiding overload of other tissues or the risk of re-injury (Ardern et al., 2016; Blanch and 

Gabbett, 2016). For example, it has been reported that load distribution in the lower limbs during 

running can be influenced by altering foot-strike pattern (Almeida et al., 2015; Dickinson et al., 

1985; Hamill et al., 2014; Williams III et al., 2012), footwear (Dickinson et al., 1985; Firminger 

and Edwards, 2016; Nigg et al., 1987), step frequency (Firminger and Edwards, 2016; 

Heiderscheit et al., 2011; Hobara et al., 2012) or running volume and speed (Nagel et al., 2008; 

Verheul et al., 2017), which might thus be used to emphasise (un)loading of the injured tissues. 

Moreover, the ability of an athlete to tolerate the cumulative GRF loading typically experienced 

during competition could form an important part of return-to-sport criteria. Therefore, GRF 

measurements could also be a valuable tool after injury has occurred, to guide rehabilitative 

training and aid return-to-sport decision making. 

In summary, accurate GRF measurements could be used in various sport contexts. Measuring 

and monitoring GRF would allow for separating the physiological and biomechanical load-

adaptation pathways (Vanrenterghem et al., 2017) and hence, further investigation and a more 

detailed understanding of the biomechanical demands of training and competition. 
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Consequently, training prescription could be further optimised to enhance performance, prevent 

injuries, inform rehabilitation programmes and/or aid return-to-sport decision.  

2.3.2 Measuring ground reaction forces in the field 

In laboratory settings, GRF is typically measured with force platforms embedded in the ground. 

The first attempts of such measurements date back to the first half of the 20th century (Amar, 

1920; Fenn, 1930, 1924) and mainly focussed on direct quantifications of anteroposterior shear 

components of the GRF. A few decades later, when more advanced force platforms became 

available, the first systematic studies investigating GRF of running were performed (e.g. 

Cavagna et al., 1964; Cavanagh and Lafortune, 1980; Munro et al., 1987). Today, force 

platforms are highly accurate and are generally used as the ‘gold-standard’ for GRF 

measurements (Winter, 2009). However, force platforms are expensive, can only measure GRF 

for a single step at a time and are not typically available outside laboratory settings. Hence, other 

approaches are required to measure or estimate GRF in the field for GRF to be used as a training 

load monitoring tool.  

Alternative methods exist to estimate GRF without the use of force platforms. For example, 

various types of instrumented insoles, which measure the pressure the foot exerts on the ground, 

have been used to estimate GRF for different tasks (Ramirez-Bautista et al., 2017). However, 

the validity of pressure insoles to measure GRF is typically restricted to walking only (Forner 

Cordero et al., 2004; Jung et al., 2014; Liu et al., 2010), since the accuracy of estimated GRFs 

decreases for more sport-specific tasks such as running and jumping (Park et al., 2016; Ramirez-

Bautista et al., 2017). Furthermore, issues such as restricted movement due to limited sole 

flexibility and added mass in the shoe, battery life, the number of sensors required, sensor signal 

coverage, high cost and the inability to measure the shear components of GRF, still limit the 

extensive use of pressure insoles (Ramirez-Bautista et al., 2017). Other studies have suggested 

that GRF might be estimated from flight time, vertical acceleration of the lower limb during 

landing and ground contact time (Clark et al., 2017, 2014; Udofa et al., 2016). However, the 

validity of this approach has currently only been verified for straight running at constant speeds 
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and requires highly accurate spatiotemporal input which is not typically available in the field. 

More recently, several studies have aimed to use machine learning and/or neural network 

approaches to predict GRF from marker trajectory data (Johnson et al., 2018b, 2018a) or body-

worn accelerometers (Pogson et al., n.d.; Wouda et al., 2018) for a variety of running tasks. 

Despite the promising results, however, computational methods typically do not allow for 

exploring the underlying physical mechanisms of the predicted GRF profiles which might limit 

their use for e.g. explaining injury mechanisms or defining performance enhancing criteria. In 

short, these different methods are thus not feasible to be used to estimate and monitor GRF in 

non-laboratory settings. 

A simple mechanical approach to estimate GRF is by using whole-body CoM accelerations. 

Based on Newton’s second law, which states that the force acting on an object equals the mass 

of that object multiplied by its acceleration (F=m∙a), GRF could be predicted as the product of 

an athlete’s mass and CoM acceleration. Given the widespread use and relatively easy 

accessibility of body-worn accelerometers in sports, this simple method might open the door for 

measuring CoM, and consequently, estimating GRF in non-laboratory settings. However, due to 

the CoM constantly changing position during movement it is virtually impossible to attach an 

accelerometer unit on, or even close to the body’s CoM. Nevertheless, several studies have 

investigated whether body-worn accelerometers can be used to either provide reasonable 

estimates of the whole-body CoM acceleration (Edwards et al., 2018; Nedergaard et al., 2017; 

Schütte et al., 2015; Wundersitz et al., 2013), or directly estimate GRF (Gurchiek et al., 2017; 

Neugebauer et al., 2014; Raper et al., 2018). Some of these studies have suggested that fatigue 

induced deviations in dynamic CoM motion might be detected (Schütte et al., 2015) or GRF 

directly predicted (Gurchiek et al., 2017; Neugebauer et al., 2014) for several straight walking 

and running tasks, using a trunk- or pelvis-mounted accelerometer respectively. However, given 

the reported errors of GRF estimates in these studies, their application for load monitoring 

purposes is questionable. Moreover, other studies have shown that accelerometers placed on the 

shank, pelvis or trunk all substantially overestimated the actual CoM (Edwards et al., 2018; 

Nedergaard et al., 2017), and that shank accelerometers cannot provide valid and reliable 
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measures of GRF (Raper et al., 2018). These authors, therefore, suggested that individual body-

worn accelerometers should be used with caution for evaluating GRF and whole-body 

biomechanical loads. Consequently, other more complex methods (e.g. accelerometry driven 

biomechanical models) are likely required to estimate GRF from accelerometers in the field. 

2.4 Mass-spring models 

Since continuous and accurate measurements of GRFs for running-based sports are yet 

unavailable outside laboratory settings, it is very difficult to investigate how isolated anatomical, 

kinematic or external parameters affect the GRF (and vice versa) in the field. Therefore, 

musculoskeletal modelling methods such as OpenSim (Delp et al., 2007; Seth et al., 2018) and 

AnyBody (Damsgaard et al., 2006) have been used to investigate the relationships between 

specific aspects of the dynamics of human movement and the external or internal forces acting 

on the body. These approaches are, however, complex and often require a substantial amount of 

kinematic and/or kinetic input. A relatively simple method that has been used to describe human 

motion in relation to GRF on the other hand, is by using mass-spring(-damper) models. In these 

models, which are based on the spring-like (elastic) nature of human running, one or several 

masses are used to represent the inertial characteristics of various body segments, while springs 

and dampers represent the energy returning (elastic) and absorbing (damping) properties of the 

different body tissues respectively. Given their simplicity and adaptability, mass-spring models 

have been used extensively to study motion of the human body and predict GRF during different 

activities.  

2.4.1 The mass-spring model 

The simplest (but arguably the most commonly used) mass-spring model is that of an individual 

point mass representing the body’s total mass, on top of a single spring (Blickhan, 1989; 

McMahon and Cheng, 1990) (figure 2.4). This mass-spring model assumes a linear vertical 

downward motion of the body’s CoM after touch-down, which is reversed during the second 

half of ground-contact (Bobbert et al., 1991; Cavanagh and Lafortune, 1980). Following 
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Hooke’s law, which states that the force in a spring is linearly related to its stiffness and 

compression (or extension), GRF can be calculated according to equation 2.1.  

 GRF = −k ∙ (yଶ − yଵ) + BM ∙ g (2.1) 

In which k represents the linear stiffness of the spring, y1 and y2 are the length of the spring 

without and with external loading respectively, BM the total body mass and g the gravitational 

acceleration. This equation can be rewritten to determine either the vertical stiffness (kvert) or leg 

stiffness (kleg) according to equations 2.2 and 2.3.  

 k୴ୣ୰୲ =
GRF୫ୟ୶

∆y୫ୟ୶
 (2.2) 

 k୪ୣ =
GRF୫ୟ୶

∆L୫ୟ୶
 (2.3) 

In which GRFmax is the maximal GRF during ground-contact, ∆ymax is the maximal vertical 

displacement of the body’s CoM (mass) and ∆Lmax the maximal vertical displacement of the leg 

(spring).  

Figure 2.4 A: the single mass-spring model consisting of the total body mass BM on a spring 

with stiffness k and length y without (y1) and with (y2) external loading respectively. B: a 

typical measured ground reaction force profile for running at 4 m·s-1 (black solid line) and 

predicted force profile from the mass-spring model (red dashed line). 

Although the mass-spring model has mainly been applied to predict GRF and determine vertical 

and/or leg stiffness for running and hopping (Farley and González, 1996; Geyer et al., 2006; 

Girard et al., 2017, 2011; McMahon and Cheng, 1990; Morin et al., 2005; Pappas et al., 2014a), 
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this model has also been used to describe various other characteristics of running at different 

constant speeds, including running economy (Dalleau et al., 1998; Heise and Martin, 1998; 

McMahon, 1987), stride length, frequency and duration (Blickhan, 1989; Bullimore and Burn, 

2007), sprint performance (Arampatzis et al., 1999; Girard et al., 2017, 2016, 2011; Hobara et 

al., 2010; Morin et al., 2006; Taylor and Beneke, 2012), fatigue effects (Dutto and Smith, 2002; 

Girard et al., 2011; Morin et al., 2006) and the influence of different surfaces (Ferris et al., 1998; 

Kerdok et al., 2002). However, despite these various applications of the single mass-spring 

model, multiple studies have shown that the simple sinusoidal GRF profiles predicted by this 

model (figure 2.4) are not an accurate representation of the actual asymmetrical GRF of running 

and impact characteristics associated with landing (Alexander et al., 1986; Bullimore and Burn, 

2007; Cavagna, 2006; Clark and Weyand, 2014). High-frequency impact force peaks related to 

support leg motion typically occur after touch-down, while the rest of the body accounts for a 

larger active force peak. Changes in these specific GRF loading characteristics have been related 

to injury, as discussed in section 1.3.1, and have been shown to be directly affected by running 

speed (Bobbert et al., 1991; Hamill et al., 1983; Kuitunen et al., 2002; Nilsson and Thorstensson, 

1989), foot-strike pattern (Clark et al., 2014; Lieberman et al., 2010), footwear (Liu and Nigg, 

2000; Zadpoor and Nikooyan, 2010) and surface incline (Gottschall and Kram, 2005). Given the 

importance of GRF in relation to these aspects, multi-body mass-spring-damper models have 

been used to model the distinct force characteristics of the GRF more accurately. 

2.4.2 Multi-body mass-spring-damper models 

To describe and study the complex behaviour of the human body in more detail, several multi-

body mass-spring-damper models have been used. The simplest of these are the models with 

two masses, such as the two mass model (Clark et al., 2017, 2014; Udofa et al., 2016) and various 

variations of a two mass-spring-damper model (Alexander et al., 1986; Derrick et al., 2000; 

Mizrahi and Susak, 1982; Nedergaard, 2017; Ozgüven and Berme, 1988) (see appendix A for a 

detailed example of the two mass-spring-damper model used in this thesis). In these models, the 

upper and lower mass typically represent the upper body and support leg respectively, while 

multiple springs and dampers represent the energy returning and absorbing characteristics of the 
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different body tissues. These studies have shown that two mass-spring-damper models can 

indeed estimate GRF profiles more accurately (i.e. including the separate impact and active 

peaks) than the single mass-spring model, for running at different constant speeds up to 5 m·s-1 

(Derrick et al., 2000; Nedergaard, 2017), different stride lengths (Derrick et al., 2000), changes 

in direction (Nedergaard, 2017) and jumping (Mizrahi and Susak, 1982; Ozgüven and Berme, 

1988). In addition to two mass-spring-damper models, other (more complex) models which 

consist of three, four or even five masses and a large number of spring and damper elements 

have been suggested. Such models have mainly been used to investigate GRF and specific 

physical or external aspects related to running, including different footwear properties (Ly et al., 

2010), muscle activity (Nigg and Liu, 1999; Nikooyan and Zadpoor, 2012; Zadpoor and 

Nikooyan, 2010), mass distributions (Liu and Nigg, 2000), ground stiffness (Ly et al., 2010) and 

even prosthetic feet (Klute and Berge, 2004). Despite the benefits of more complex and detailed 

models, however, the added elements also require more model parameters to be estimated, which 

makes it increasingly difficult to determine parameter values and interpret their physical 

meaning.  

Although mass-spring-damper models have been comprehensively used to study different types 

of movements, some modelling assumptions are known to violate important characteristics of 

human motion. For example, the constant stiffness of the springs (and other constant mechanical 

properties) during the ground contact phase do not accurately represent the variable stiffness of 

the different body parts, which changes throughout the ground contact phase due to muscular 

activation (muscle tuning) before and after touch-down (Blickhan, 1989; Nigg and Wakeling, 

2001; Santello, 2005; Wakeling et al., 2001). Moreover, the muscles are known to produce a 

substantial amount of work when pushing the body off the ground (Cavagna, 2006; Winter, 

1983), which is not taken into account by any of the elements in the mass-spring-damper models. 

The absence of energy producing elements is thus a major limitation of the above described 

passive models. Therefore, some attempts have been made to include active elements 

representing muscle activity into a four-body model (Nikooyan and Zadpoor, 2012; Zadpoor 

and Nikooyan, 2010). These studies have, however, shown that mass-spring-damper models are 
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too simplistic to allow for an accurate representation and investigation of the complex 

coordinated activation of different muscles. 

Another limitation of mass-spring-damper models is that they require experimental data not 

typically available outside a laboratory. For example, the majority of studies have used GRFs 

measured with a force platform or marker trajectory data to determine the different model 

parameters and examine the features of interest. However, several studies have investigated the 

use current body-worn sensors to estimate the parameters of the single mass-spring model. 

Trunk-mounted GPS devices and the embedded accelerometers especially, have been used to 

simultaneously determine running velocity (v) flight time (tf) and ground contact time (tc). From 

these variables, the maximal GRF and maximal displacements of the CoM (∆ymax) and leg 

(∆Lmax) are then estimated according to equations 2.4-2.6 (Morin et al., 2005).    

 GRF୫ୟ୶ =
π

2
∙ ൬

t

tୡ
+ 1൰ ∙ BM ∙ g (2.4) 

 ∆y୫ୟ୶ =
GRF୫ୟ୶ ∙ tୡ

ଶ

BM ∙ πଶ
+ g ∙

tୡ
ଶ

8
 (2.5) 

 ∆L୫ୟ୶ = L − ඨLଶ − ൬
v ∙ tୡ

2
൰

ଶ

+ ∆y୫ୟ୶ (2.6) 

In which L is the initial leg length, BM is the total body mass and g is the gravitational 

acceleration. Subsequently, ∆ymax and ∆Lmax are then typically used to calculate and evaluate an 

athlete’s vertical and leg stiffness according to equations 2.2 and 2.3. This method has for 

instance been used to investigate the effects of running on different surfaces (Gaudino et al., 

2013), assess sprint performance and fatigue (Girard et al., 2011; Morin et al., 2006), or identify 

stride imbalances (Buchheit et al., 2015). The reliability and validity of this approach has, 

however, also been questioned (Eggers et al., 2018) and it remains to be determined how suitable 

stiffness measures following from an accelerometer driven mass-spring model are. Furthermore, 

due to the simplicity of the single mass-spring model this method is limited to the investigation 

of vertical and leg stiffness only.  
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Despite the use of a mass-spring model to assess training load variables, this simple model 

cannot accurately predict the characteristics of the task-specific GRF profiles for various 

movements. Multi-body mass-spring-damper models have, however, been shown to be capable 

of accurately replicating GRFs for different tasks, as discussed above. Since the motion of the 

masses in these more complex models are typically described by their accelerations, a similar 

accelerometer-based approach might be used to determine the parameters for these models. For 

example, commonly trunk-worn accelerometers have been suggested to be used as input for the 

upper mass in a two mass-spring-damper model and predict GRF (Nedergaard, 2017). However, 

although initial results for straight running and side-stepping tasks look promising, further 

research is required to examine whether this novel mass-spring-damper model approach can 

indeed allow for accurately estimating GRF profiles from body-worn accelerometers in the field. 

2.5 Summary 

Training loads are monitored in sports as part of a process which primarily aims to enhance 

athletic performance, whilst reducing the risk of injury. Current body-worn sensors, such as GPS 

devices and accelerometers, are a popular means to measure a wide variety of external training 

load metrics. In contrast to physiological loads, however, the biomechanical demands of training 

and competition are difficult to quantify and are, therefore, still not well understood. GRF is a 

well-established measure of whole-body biomechanical loading and could thus provide further 

insight in the biomechanical loads imposed on athletes but cannot currently be measured outside 

laboratory settings. However, since GRF is determined by the accelerations of the body’s 

different segments, body-worn accelerometers might be used to estimate and assess GRF in the 

field. Previous studies have for instance shown that simple biomechanical features can be 

obtained from a single mass-spring model for straight running at constant speeds, using 

accelerometry input. However, methods to accurately estimate GRF across tasks typically 

performed during running-based sports are still unavailable. Therefore, if body-worn 

accelerometers can be used to accurately estimate GRF (e.g. by using a mass-spring-damper 

model or a direct mechanical approach) this would allow for monitoring whole-body 

biomechanical loading in the field. 



 

27 
 

2.6 Thesis aim and objectives 

The overall aim of this thesis was to investigate if GRF can be estimated from segmental 

accelerations, especially for dynamic and high-intensity running tasks that are frequently 

performed during running-based sports. The specific objectives of the studies in this thesis were: 

- Study 1: to examine if a two mass-spring-damper model can be used to accurately 

reproduce GRF profiles and loading characteristics for high-intensity running tasks. 

- Study 2: to investigate whether a two mass-spring-damper model can be used to 

accurately predict GRF from trunk accelerometry. 

- Study 3: to validate GRF estimated from multiple segmental accelerations using a direct 

mechanical approach and establish the minimal number of segments required. 

- Study 4: to identify key segmental contributions to specific GRF features, using a 

principal component analysis. 

The outcomes of these studies will provide further insight in the feasibility of using body-worn 

accelerometers to measure GRF and monitor whole-body biomechanical loading during 

running-based sports in the field. 
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Chapter 3:  Using a two mass-spring-damper model to 

reproduce ground reaction forces for high-intensity running 

tasks 

 

Abstract: Running impact forces expose the body’s hard- and soft-tissues to biomechanical loads 

leading to beneficial adaptations, but also risk of injury. High-intensity running tasks especially, 

are deemed highly demanding for the musculoskeletal system, but stresses experienced during 

these actions have been relatively unexplored. To eventually predict ground reaction forces 

(GRFs) and understand the biomechanical loads experienced during such activities in greater 

detail, this study aimed to determine whether a two mass-spring-damper model can be used to 

accurately reproduce GRF profiles and loading characteristics for high-intensity running tasks. 

This model, based on eight model parameters, was used to replicate GRFs for rapid accelerations 

and decelerations, constant speed running and maximal sprints. GRF profiles and impulses could 

be reproduced with low to very low errors across tasks. However, the more subtle loading 

characteristics (impact peaks and loading rates) were modelled less accurately with moderate to 

very high errors. These results show that a two mass-spring-damper model can be used to 

reproduce overall GRFs for different high-intensity running tasks. If information from body-

worn sensors (e.g. accelerations of the upper trunk) can be used to estimate the model 

parameters, this approach might open the door to predicting GRFs (whole-body biomechanical 

loading) in the field and could help to understand the biomechanical demands of training and 

competition in greater detail. 

This study was accepted for publication in Sports Biomechanics (Verheul et al., 2019). 
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3.1 Introduction 

During human running the body is repetitively exposed to collisions with the ground. Ground 

reaction forces (GRFs) resulting from these impacts are absorbed by the different hard- and soft-

tissues of the lower limbs and returned in a spring-like manner. Several mass-spring(-damper) 

models have, therefore, been used to further understand movement, as well as anatomical and 

mechanical aspects, in relation to the GRF (Nikooyan and Zadpoor, 2011). The simplest model 

suggested is that of a single point mass, representing the body’s centre of mass (CoM), attached 

to a spring (Blickhan, 1989; McMahon and Cheng, 1990) (figure 2.4 A). This mass-spring 

model, which is based on the elastic nature of running and assumes a linear vertical downward 

CoM motion which is reversed during the second half of stance (Bobbert et al., 1991; Cavanagh 

and Lafortune, 1980), has been applied to describe various running characteristics including 

vertical and leg stiffness (Farley and González, 1996; Girard et al., 2017, 2011; McMahon and 

Cheng, 1990; Morin et al., 2005; Pappas et al., 2014b), running economy (McMahon, 1987), 

stride length, frequency and duration (Blickhan, 1989; Bullimore and Burn, 2007) and fatigue 

effects (Dutto and Smith, 2002; Girard et al., 2011; Morin et al., 2006). However, multiple 

studies have shown that GRF profiles following from the mass-spring model are not an accurate 

representation of the actual GRF of running (Alexander et al., 1986; Bullimore and Burn, 2007; 

Clark and Weyand, 2014). 

During ground contact, a mass-spring model assumes vertical motion of the mass (body’s CoM) 

and linear compression of the spring, resulting in a sine shaped GRF profile with a single force 

peak at mid-stance (figure 2.4 B). However, it is well known that this basic GRF curve does not 

well describe the asymmetrical force application  and impact characteristics associated with 

landing (Alexander et al., 1986; Bullimore and Burn, 2007; Cavagna, 2006; Clark and Weyand, 

2014). High-frequency impact force peaks typically occur after touch-down, and are affected by 

running speed (Bobbert et al., 1991; Hamill et al., 1983; Kuitunen et al., 2002; Nilsson and 

Thorstensson, 1989), foot-strike pattern (Clark et al., 2014; Lieberman et al., 2010), footwear 

(Liu and Nigg, 2000; Zadpoor and Nikooyan, 2010) and surface incline (Gottschall and Kram, 

2005). These impact peaks have been shown to be primarily be related to support leg motion, 
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while the upper body accounts for the larger active peak (Bobbert et al., 1991; Clark et al., 2017). 

Therefore, a two mass-spring-damper model has been used to describe the distinct force 

characteristics due to upper and lower mass behaviour (Alexander et al., 1986; Derrick et al., 

2000). Previous studies have shown that this model can indeed replicate GRF profiles, including 

the impact and active peaks, for running at different speeds up to 5 m·s-1 (Derrick et al., 2000; 

Nedergaard, 2017), different stride lengths (Derrick et al., 2000), and changes in direction 

(Nedergaard, 2017). However, the ability of this simple model to replicate GRF profiles for more 

sport-specific running tasks is yet completely unknown. 

During running-based sports, athletes typically perform a wide variety of different movements. 

These activities can be divided into low-intensity (e.g. walking, jogging) and high-intensity (e.g. 

rapidly accelerating, sprinting) movements, as well as sport-specific actions (e.g. shooting, 

jumping, tackling) (Bloomfield et al., 2007). The external forces experienced during these 

activities exposes the musculoskeletal system to various biomechanical loads, leading to 

beneficial tissue adaptations (Bohm et al., 2015; Rosa et al., 2015; Wisdom et al., 2015), but 

also the risk of injuries (Drew and Finch, 2016; Gabbett and Ullah, 2012). High-intensity 

activities, such as rapid accelerations and decelerations >1 m·s-2 or sprinting, are deemed 

especially demanding for the musculoskeletal system (Buchheit and Simpson, 2017; Duhig et 

al., 2016; Harper and Kiely, 2018; Vanrenterghem et al., 2017). Moreover, high-intensity 

running has been found to account for up to 31% of the total distance covered in professional 

sports (Akenhead et al., 2013; Bradley et al., 2009; Dalen et al., 2016; Di Salvo et al., 2009; 

Vigh-Larsen et al., 2018). If the task-specific (double peak) GRF profiles of these activities can 

be accurately quantified, this could help to understand the mechanical demands of training and 

competition in greater detail. Therefore, to eventually predict GRF in the field, this study aimed 

to determine whether a two mass-spring-damper model can be used to accurately reproduce GRF 

profiles and loading characteristics for high-intensity running tasks that are frequently performed 

during running-based sports.   
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3.2 Methods 

Ethical approval for this study was granted by Liverpool John Moores University ethics 

committee, with reference number 16/SPS/017. Data from the cohort and data collection 

described below were used for the studies described in this chapter, as well as chapter 4. 

3.2.1 Participants and protocol 

Fifteen team sports athletes participated in this study (10 males and 5 females, age 23±1 yrs, 

height 174±8 cm, body mass 74±9 kg). All participants were healthy at the time of testing and 

were physically active for at least three hours per week (sports participation 8.5±3 hrs per wk). 

Prior to data collection, participants provided written informed consent according to Liverpool 

John Moores University ethics regulations. 

After a short warm-up which consisted of easy jogging and stretching, participants performed a 

variety of high-intensity running tasks. Participants were instructed to land with one foot on a 

force platform embedded in the ground for a single step during each trial. Acceleration trials 

were performed from standstill to sprinting speed while force data were collected for the first, 

second and third step of separate trials. Decelerations included the first and second steps of 

rapidly decelerating from sprinting to immediate standstill, as well as gradual decelerating from 

sprinting to easy jogging. Constant speed running trials were performed at speeds ranging from 

2 m·s-1 to maximal sprinting speed (~7-9 m·s-1; participant-specific), with stepwise increases of 

1 m·s-1. Running speeds were measured with photocell timing gates (Brower Timing Systems, 

Draper, UT, USA) which were positioned at 3 m apart at 1.5 m before and after the force 

platform. To control running speed, verbal feedback to speed up or slow down was given after 

each trial, and only trials within a ± 5% range of the target speed were included. Three 

consecutive trials were performed for each task and speed in a different randomised order for 

each participant.  

3.2.2 Kinetic data collection 

For each trial, GRF data were collected for a single step on the force platform (9287B, 90x60 

cm, Kistler Holding AG, Winterthur, Switzerland) at a sampling frequency of 3000 Hz. 
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Measured GRF were exported to Matlab (version R2016a, The MathWorks, Inc., Natick, MA, 

USA) where touch-down, and take-off from the force platform were identified by a 20 N 

threshold of the vertical GRF. GRF data were then filtered using a 2nd order Butterworth low-

pass filter with a cut off frequency of 50 Hz, and resultant GRF was calculated from the three 

individual force components (Fx, Fy, Fz).  

3.2.3 Modelling ground reaction forces 

A two mass-spring-damper model (appendix A), described by eight natural model parameters 

(p1, v1, p2, v2, λ, ω1, ω2 and ζ), was used to replicate the measured GRF (Alexander et al., 1986; 

Derrick et al., 2000). The motion of the model was described by the acceleration of its upper and 

lower mass according to equations 3.1 and 3.2. 

 aଵ = −ωଵ
ଶ ∙ (pଵ − pଶ) + g (3.1) 

 aଶ = −ωଶ
ଶ ∙ pଶ + ωଵ

ଶ ∙ λ ∙ (pଵ − pଶ) − 2 ∙ ζ ∙ ωଶ ∙ vଶ + g (3.2) 

In which a1 and a2 are the acceleration of the upper and lower mass respectively, g is the 

gravitational acceleration, p1 is the relative position of the upper mass m1, p2 and v2 are the 

relative position and initial velocity of the lower mass m2, λ is the ratio of the upper mass relative 

to the lower mass (m1/m2), ω1 and ω2 are the natural frequencies of the upper and lower spring 

respectively, and ζ is the damper’s damping ratio. From these parameters, the modelled GRF 

was then calculated according to equation 3.3. 

 GRF୫୭ୢୣ୪୪ୣୢ = −
BM ∙ ωଶ

1 + λ
∙ (ωଶ ∙ pଶ + 2 ∙ ζ ∙ vଶ) (3.3) 

In which BM is the total body mass. The eight initial parameters of the mass-spring-damper 

model were optimised to fit the modelled GRF to the resultant measured GRF. For each trial, a 

unique optimal set of the eight parameters was defined from which the modelled GRF was 

calculated. Modelled GRF was always forced to start from 0 N at touch-down (which is a 

necessity for a physically realistic representation of the GRF during stance) by calculating the 

lower mass position p2 from its initial velocity v2, ω2 and λ according to equation 3.4.  
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 pଶ =
−2 ∙ ζ ∙ vଶ

ωଶ
 (3.4) 

The optimisation process for the parameters to model GRF was based on solving the model’s 

differential equations using a numerical method (appendix B). The two 2nd order differential 

equations for the upper and lower mass accelerations a1 and a2 (equations 3.1 and 3.2) were 

rewritten to four 1st order equations and solved with numerical solvers. For this, a purpose 

written Python script (Python, 2017) with a numerical optimisation algorithm (SciPy, 2017) was 

used. Measured GRF curves were down-sampled to 100 Hz in order to reduce computation time 

and starting conditions for the optimisation process were based on the model parameters as 

described by Nedergaard (2017). The resulting parameters from the optimisation process were 

then used to calculate the modelled GRF according to equation 3.3. The best combination of 

model parameters was selected by minimising the root mean square error (RMSE; equation 3.5), 

in combination with the gradient error between the modelled and measured GRF curve over the 

duration of ground contact. 

 RMSE = ඨ
∑ (GRF୫୭ୢୣ୪୪ୣୢ(t) − GRF୫ୣୟୱ୳୰ୣୢ(t))ଶ୬

୲ୀ

n
 (3.5) 

In which t is each individual time point of the GRF curve and n the total duration of stance. 

3.2.4 Data processing and analysis 

Measured and modelled GRF curves were normalised to each participant’s body mass. Accuracy 

of the modelled GRF profiles was evaluated by the absolute (equation 3.5) and relative (equation 

3.6) curve RMSE compared to the measured GRF. Relative RMSEs (as well as GRF loading 

characteristics) were determined to allow for comparison between tasks with different GRF 

magnitudes. 

 
RMSE୰ୣ୪ୟ୲୧୴ୣ =

ඩ∑ ൬
GRF୫୭ୢୣ୪୪ୣୢ(t) − GRF୫ୣୟୱ୳୰ୣୢ(t)

GRF୫ୣୟୱ୳୰ୣୢ(t)
൰

ଶ
୬
୲ୀ

n
 ∙  100% 

(3.6) 

In addition, errors of relevant GRF loading characteristics impulse, impact peak and loading rate 

were examined to further evaluate modelled GRF accuracy. Impulse was defined as the area 
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under the whole GRF curve and was normalised to the duration of ground contact. Impact peak 

was defined as the initial force peak during the first 30% of stance. Loading rate was defined as 

the average gradient of the GRF curve between touch-down and the impact peak and was 

normalised to the time to the impact peak. RMSE and GRF loading characteristic errors were 

then averaged across trials and participants for each task, i.e. accelerations, decelerations, and 

constant speed running at a low (2-3 m·s-1), moderate (4-5 m·s-1) and high (>6 m·s-1) speed. 

RMSE was rated as being very low (<1 N·kg-1), low (1-2 N·kg-1), moderate (2-3 N·kg-1), high 

(3-4 N·kg-1) or very high (>4). Based on meaningful performance or injury related differences 

(Bazuelo-Ruiz et al., 2018; Bezodis et al., 2017; Hunter et al., 2005), the magnitude of GRF 

loading characteristic errors was rated as being very low (<5%), low (5-10%), moderate (10-

15%), high (15-20%) or very high (>20%). Furthermore, linear correlation analyses were 

performed between modelled and measured impulses, impact peaks and loading rates, and rated 

as very weak (R2<0.1), weak (R2=0.1-0.3), moderate (R2=0.3-0.5), strong (R2=0.5-0.7), very 

strong (R2=0.7-0.9) or extremely strong (R2=0.9-1) (Hopkins et al., 2009).        

3.3 Results 

The two mass-spring-damper model was able to accurately replicate measured GRF profiles 

across tasks (figure 3.1; table 3.1). RMSE was very low for accelerations, as well as low- and 

moderate speed running. Despite the slightly increased modelled GRF errors for the higher 

intensity tasks, RMSE was still low for the highest running speed but moderate for decelerations.  

Impulses were modelled with very high accuracy (table 3.1). Relative impulse errors for 

modelled GRF profiles were smaller than 1% for accelerations, decelerations and running at 

different constant speeds. Consequently, the correlation between the measured and modelled 

GRF impulses were extremely strong (R2=1, p<0.001) across running tasks (figure 3.2 A). 

Moreover, absolute as well as relative impulse errors were independent of task or the magnitude 

of the area under the GRF curve (figure 3.2 B and C). 

Since not all trials included a distinct impact peak (e.g. for accelerations (figure 3.1 A) or when 

participants ran with a forefoot strike during high-speed running (figure 3.1 G)) and for several 
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trials the impact peak could not be modelled (see figure 3.1 B, F and H), only a select number 

of trials was included in the impact peak and loading rate analysis (table 3.1). For the trials in 

which the measured GRF included an impact peak, the model could reproduce these peaks for 

34%, 99% and 48% of the acceleration, deceleration and constant speed running trials 

respectively. Impact peaks were modelled with low to moderate errors for constant speed 

running (table 3.1). However, for accelerations (18.92%) and decelerations (20.64%) the relative 

modelled impact peak errors were high to very high. Despite this, the modelled impact peak 

values had an extremely strong correlation (R2=0.97, p<0.001) with the measured force peaks 

across the different tasks (figure 3.2 D). The model typically underestimated the measured 

impact peaks and the absolute error significantly (p<0.001) increased when the measured impact 

peak increased (figure 3.2 E). However, the relative error remained constant regardless of task 

and the magnitude of the impact peak (figure 3.2 F). 
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Table 3.1 Modelled ground reaction force curve and loading characteristics errors 

 RMSE 
Impulse 

error 
Impact peak 

error 
Loading rate 

error 
 N· 

kg-1 
% 

N·s· 
kg-1 

% 
N· 
kg-1 

% 
N·kg-1· 

s-1 
% 

Accelerations (n=189) 
0.69 

±0.47 
9.9 

±6.4 
0.01 

±0.01 
0.6 

±0.5 
2.43 

±1.49 
18.9 

±11.7 
487 

±342 
31.3 

±19.9 

Decelerations (n=240) 
2.48 

±1.17 
33.9 

±28.3 
0.01 

±0.01 
0.7 

±0.5 
7.43 
±4 

20.6 
±13.7 

431 
±276 

18.7 
±9.4 

Constant speed running         

     Low (2-3 m·s-1; n=126) 
0.48 

±0.22 
7.6 

±5.8 
0.01 
±0 

0.4 
±0.3 

1.53 
±1.25 

10.2 
±8.5 

200 
±116 

19.1 
±9.8 

     Mod. (4-5 m·s-1; n=126) 
0.78 

±0.25 
9.4 

±3.9 
0.01 
±0 

0.3 
±0.2 

1.54 
±0.86 

7.5 
±4.2 

254 
±101 

20.8 
±6.9 

     High (>6 m·s-1; n=176) 
1.21 

±0.56 
13.6 
±7.1 

0.01 
±0 

0.3 
±0.2 

2.99 
±1.74 

12 
±8.1 

287 
±156 

18.4 
±9.7 

All tasks (n=857) 
1.28 

±1.06 
17 

±19.1 
0.01 

±0.01 
0.5 

±0.4 
5.74 

±3.85 
17.4 

±12.2 
385 

±247 
20.3 

±10.7 
Mean ± standard deviations for root mean square errors (RMSE), impulse, impact peak and 
loading rate errors of the modelled GRF profiles for different tasks. Values are either absolute 
or relative errors compared to the measured GRF. Impact peak and loading rate (grey shaded) 
was modelled for 34%, 99% and 48% of the acceleration, deceleration and constant speed 
running trials respectively. 
 

Modelled loading rate values were high to very high across the different tasks (table 3.1). Similar 

to the impulse and impact peak however, the correlation between measured and modelled 

loading rates was extremely strong (R2=0.96, p<0.001) (figure 3.2 G). The model typically 

underestimated the loading rate and the absolute errors significantly (p<0.001) increased when 

the measured loading rate increased (figure 3.2 H). The relative loading rate errors on the other 

hand, were independent of task and magnitude (figure 3.2 I). 
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Figure 3.1 Representative examples of measured (black solid line) and modelled (red dotted 

line) ground reaction forces (GRF) including the root mean square error (RMSE) between both 

curves. GRF curves for accelerations and running at high speeds did not always contain a 

distinct impact peak (A, G).  
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Figure 3.2 Measured, modelled and error values for the impulses, impact peaks and loading 

rates. Negative and positive errors are a respective underestimation and overestimation of the 

measured value.  

For all eight model parameters and across tasks, standard deviations of the parameter values 

were large (table 3.2, figure 3.3). For deceleration trials especially, the five mass related 

parameters (i.e. initial positions p1/p2 and velocities v1/v2 of the two masses, as well as the 

mass ratio λ) were highly variable (figure 3.3). The natural spring frequencies ω1 and ω2 varied 

the most across all different tasks. Although the damping ratio ζ was less variable between 

tasks, the standard deviations and variability within tasks was still large.  
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Table 3.2 Mean ± standard deviation values for the eight model parameters for the different tasks 

 
p1 

(m) 
p2 

(m) 
v1 

(m·s-1) 
v2 

(m·s-1) 

ω1 
(N·m-1· 

kg-1) 

ω2 

(N·m-1· 
kg-1) 

λ 
(au) 

ζ 
(au) 

Accelerations 
0.09 -0.7 16.5 0.37 32 102 0.4 0.9 
±8.2 ±5.5 ±146 ±5 ±27 ±155 ±2.3 ±3.9 

Decelerations 
12.97 -0.33 81 45.87 24 114 161.4 0.4 
±26.4 ±1.2 ±184.7 ±132.3 ±32 ±91 ±474 ±0.5 

Constant speed running         

     Low (2-3 m·s-1) 
0.63 0.07 -2.9 -0.12 31 72 5.87 0.9 
±3.1 ±1.2 ±56.2 ±1.2 ±28 ±78 ±5.9 ±2.4 

     Mod. (4-5 m·s-1) 
0.91 0.09 12.67 -0.2 37 101 4.16 0.6 
±5.2 ±0.8 ±137 ±1.1 ±35 ±106 ±6.3 ±1.1 

     High (>6 m·s-1) 
-2.21 -1.74 -1.83 0.98 34 134 1.93 1.9 
±13.4 ±10.31 ±115 ±12.6 ±35 ±148 ±5 ±7 

All tasks 
-4 -0.57 28.49 13.71 31 109 49.38 0.9 

±17.1 ±5.3 ±146.9 ±74.9 ±32 ±129 ±267 ±3.7 

 

 
Figure 3.3 Model parameter values for the different tasks including means (black dotted line) 

and standard deviations (SD; grey dashed line) for accelerations, decelerations, and low, 

moderate and high-speed running. For visualisation purposes, extreme individual outliers have 

been removed from the plots.  
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3.4 Discussion  

The purpose of this investigation was to determine whether a two mass-spring-damper model 

can be used to accurately reproduce GRF profiles for a range of high-intensity running tasks. 

Average modelled curve errors (RMSE) were low to moderate for accelerations, decelerations 

and running at various constant speeds. The slightly higher errors observed in modelled 

deceleration curves, was likely due to the distinct GRF profile. The model typically 

underestimated the rapidly increasing forces after touch-down (i.e. high impact peak and loading 

rate) but overestimated the much lower second (active) peak (figure 3.1 C and D). Similar to 

these findings, Nedergaard (2017) reported the modelled GRF curve errors to be significantly 

higher in 45 and 90 degree side-cutting tasks, which typically have a similar high impact peak 

to decelerations. In addition, Derrick et al. (2000) also reported strongly increased GRF errors 

for a single participant who had substantially higher impact peaks during straight constant speed 

running. Nedergaard (2017) suggested increased curve errors in side-cutting tasks to be due to 

lower values for the natural frequencies of the upper (ω1) and lower spring (ω2), which reduces 

the magnitude of the impact peak (Derrick et al., 2000; Nedergaard, 2017). In a parameter 

sensitivity analysis with a two mass-spring-damper model, Derrick et al. (2000) showed that in 

order to increase the impact peak, the two mass-spring-damper model requires increased spring 

stiffness ω1, ω2, initial position of the upper mass v1 and mass ratio λ, as well as a reduced 

damping ratio ζ. In this study, mean values for v1 and λ were indeed substantially higher for 

decelerations than for other tasks, but ω1, ω2 and ζ were in a similar range as for the other tasks 

(table 3.2; figure 3.3). It might be that for GRF profiles with higher impact peaks, the model 

needs to adjust as many parameters as possible to replicate this first peak, while maintaining an 

accurate representation of the rest of the curve characteristics (e.g. active peak, stance time).  

The impulse (area under the GRF curve) was modelled with very high accuracy (absolute error 

≈0.01 N·s·kg-1) and had a perfect correlation (R2=1) with the measured impulse. These results 

are in accordance with errors (≈0.01 N·s·kg-1) and extremely strong correlations (R2=0.98-1) 

found by Nedergaard (2017) for straight running and side-cutting tasks, but much lower than 

Derrick et al. (2000) who reported impulse errors of 5.5-8.5 N·s (≈0.08-0.12 N·s·kg-1) for 
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straight running at a moderate speed. Since the latter study only included ω1, ω2 and p2 in their 

optimisation routine, the better results in the present study are likely due to the inclusion of all 

model parameters in the optimisation process. Another explanation of the accurate results for 

the impulse is that overall curve errors (RMSE) average out when examining the impulse. If for 

example, the impact peak was slightly underestimated, but the active peak was overestimated, 

the impulse error was only affected minimally. Therefore, the two mass-spring-damper model 

was able to reproduce highly accurate estimates of whole-body loading (i.e. impulse) across 

tasks.  

In contrast to overall loading, the more subtle GRF loading characteristics, impact peak and 

loading rate, were modelled less accurately. Moreover, the model was not able to reproduce the 

initial impact peak for a number of trials. The impact peak represents the end of the sharp force 

increase due to the lower limb colliding with the ground (Clark et al., 2017), and is typically 

followed by a slight decrease in GRF before gradually increasing to the active peak caused by 

the rest of the body (Bobbert et al., 1991). For accelerations and constant speed running this 

decrease in GRF is small and forms only a small part of the whole curve. Since the curve gradient 

and RMSE were used as optimisation criteria for the model parameters, a continuously rising 

curve from touch-down to mid-stance (i.e. ignoring the impact peak) only affected these criteria 

minimally. This explains why in decelerations, in which the impact peak comprises a much 

larger part of the GRF curve, for 99% of the trials an impact peak was modelled, compared to 

only 34-48% for accelerations and constant speed running. Moreover, the model typically 

underestimated the impact peak (and consequently loading rate) and errors increased as the 

impact peak increased (figure 3.1 C and D; figure 3.2 E and H). In general, differences between 

the magnitude of impact and active peaks was also higher for higher impact peaks, e.g. in 

decelerations with a high impact peak the second peak was typically much lower (figure 3.1 D). 

Since most model parameters that affected the impact peak also influenced the active peak 

(Derrick et al., 2000), this difference could not be effectively modelled. Hence, the model 

typically underestimated the impact peak more as the magnitude increased, to limit the 

overestimation of the second peak.  
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Despite the slightly higher errors for impact peaks and loading rates there were extremely strong 

correlations (R2=0.96-0.97) between the measured and modelled values (figure 3.2 E and H). 

Udofa et al. (2016), who used a similar (two mass) model to replicate GRF found a correlation 

of R2=0.82 between measured and modelled impact peaks, across different running speeds and 

loading conditions. For future research or potential application in the field, the extremely strong 

linear relationship observed in this study might be used to recalculate and improve the modelled 

impact peaks and loading rates to achieve more accurate estimates of these characteristics.      

A limitation of the two mass-spring-damper model used in this study is the assumption of spring-

like behaviour of the body, meaning constant stiffness of the springs (i.e. muscle-tendon units) 

throughout the stance phase. Moreover, during the first half of stance the model’s damper 

absorbs energy while the model does not include elements that produce energy (e.g. muscle 

work) during the second half of stance. It is, however, known that the leg is stiffer during landing 

than take-off (Blickhan, 1989), and that the muscle-tendon units produce more work during the 

push-off phase compared to landing (Cavagna, 2006). Derrick et al. (2000) acknowledged this 

problem and increased the modelled GRF by 10% at every time point on the curve, resulting in 

substantial reductions of modelled curve and impulse errors. Given the accuracy of RMSE and 

impulse in the present study it is questionable whether such an approach would improve the 

results. Since increased leg stiffness has been shown to reduce energy requirements (Dutto and 

Smith, 2002; McMahon and Cheng, 1990) it is likely that the model overcompensates the 

absence of active energy supply by increasing its stiffness (i.e. higher ω1 and ω2). This might 

explain that on average stiffness was higher for accelerations and constant speed running, where 

the muscles need to produce more energy, compared to decelerations, where energy is primarily 

absorbed (table 3.2). 

Another limitation of this study is the complexity of the model parameter combination. As 

described above, different parameters represent multiple physical aspects (e.g. leg stiffness) and 

affect various GRF characteristics (e.g. impact peak, stance time) at the same time (Derrick et 

al., 2000). During the optimisation process, the numerical solvers search for an optimal modelled 
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GRF solution in the eight-dimensional parameter space. Because of the complexity of this search 

space, multiple local minima might be found that give similarly good solutions for the modelled 

GRF curve, which is likely to be the main reason for the high parameter variability and 

physically unrealistic parameter values observed in this study (table 3.2). For example, many 

modelled GRF solutions had mass ratios larger than 20, meaning that for those trials the lower 

mass (support leg) was negligible relative to the rest of the body. One should, therefore, be 

careful to not over interpret the physical meaning of model parameters found in this study.     

In this study, the modelled GRF was estimated by adjusting the model parameters to fit the GRF 

measured from a ground embedded force platform. However, outside of laboratory settings (e.g. 

running track, football pitch), force platforms and measured GRF are not typically available and 

other methods are required for estimating the model parameters to predict GRF. Since the motion 

of the two mass-spring-damper model is described by the acceleration of its two masses, body-

worn accelerometry might be a potential candidate. For example, trunk-mounted accelerometers 

are currently widely used in sports to evaluate different training load characteristics in the field 

(Akenhead and Nassis, 2016; Camomilla et al., 2018; Cardinale and Varley, 2017). If these trunk 

accelerations can be used to predict the model parameters, the two mass-spring-damper model 

might be used to estimate GRF in non-laboratory settings. This approach could help researchers 

and practitioners to understand the biomechanical demands of training and/or competition in 

greater detail. 

3.5 Conclusion  

This study shows that a simple two mass-spring-damper model can accurately reproduce overall 

GRF curves for a range of high-intensity running tasks. These tasks account for the majority of 

biomechanical loads experienced during running-based sports and predicting GRF for these 

tasks in the field could help to better understand the biomechanical demands of training and/or 

competition. If information from body-worn sensors (e.g. accelerations of the upper trunk) can 

be used to estimate the two mass-spring-damper model parameters, this approach might open 

the door for predicting GRF in non-laboratory settings. 
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Chapter 4:  Predicting ground reaction forces from trunk 

accelerations with a two mass-spring-damper model 

 

Abstract: During running-based sports, athletes are exposed to substantial musculoskeletal 

stresses. Although whole-body biomechanical loads, which are the external ground reaction 

forces (GRFs), can be measured precisely in a laboratory, valid methods for accurately 

estimating GRF in the field are currently unavailable. Mass-spring models have been used to 

predict various biomechanical aspects (including GRF) from popular body-worn 

accelerometers, but these simple models are known to not accurately predict the task-specific 

GRF profiles for different running activities. Therefore, this study investigated if GRF can be 

predicted from a two mass-spring-damper model by adjusting its eight model parameters to 

replicate measured trunk accelerations for rapid accelerations and decelerations, constant speed 

running and maximal sprints. The resulting parameters were then used to predict GRF directly, 

or indirectly using a relationship with parameter values required to reproduce GRF. Measured 

trunk acceleration signals could be replicated well, with low to moderate errors across the 

different tasks. However, the following GRF predictions were very poor regardless of which 

method (either direct or indirect) was used. These results show that GRF cannot be predicted 

from trunk accelerations using a two mass-spring-damper model, suggesting that accelerations 

of the trunk alone are unlikely to be sufficient to accurately predict GRF in running-based sports. 

Therefore, additional information (e.g. accelerations of other segments) is likely required to 

measure and monitor whole-body biomechanical loads in non-laboratory settings. 
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4.1 Introduction 

In running-based sports, athletes perform a large range of sport- and situation-specific 

movements including steady running, sprinting, accelerating, decelerating, cutting, turning and 

jumping. These actions expose the hard- and soft-tissues of the body to a substantial amount of 

musculoskeletal stresses. Internal biomechanical stresses are partly the result of the external 

whole-body loads, which are the ground reaction forces (GRF) and can be measured precisely 

in a laboratory environment using force platforms. In combination with kinematic information 

from motion capture systems, the internal stresses, such as muscle forces (Hamner et al., 2010; 

Hamner and Delp, 2013) and joint forces (Harrison et al., 1986), can be calculated. Force 

platforms and motion capture technologies are, however, not typically available in non-

laboratory settings and biomechanical loads are thus hard to measure directly in every-day 

training environments.  

Given the direct relationship between the acceleration of the body’s centre of mass (CoM) and 

GRF (F=m∙a), body-worn accelerometers have been used to evaluate whole-body biomechanical 

loads. These measures (e.g. New Body Load, Dynamic Stress Load, PlayerLoad, Force Load) 

are typically derived from trunk accelerometry and assume the trunk to adequately represent the 

body’s CoM (Boyd et al., 2011; Colby et al., 2014; Ehrmann et al., 2016; Gaudino et al., 2015; 

Page et al., 2015). It has, however, been shown that individual segmental accelerations cannot 

accurately represent whole-body CoM accelerations and/or directly predict GRF (Edwards et 

al., 2018; Nedergaard et al., 2017; Pavei et al., 2017a; Raper et al., 2018; Vanrenterghem et al., 

2010; Wundersitz et al., 2013). Other studies have used trunk-mounted accelerometers to predict 

and examine simple estimates of GRF, as well as vertical and leg stiffness, from a mass-spring 

model (Buchheit et al., 2015; Gaudino et al., 2013; Girard et al., 2011; Morin et al., 2006). This 

simple model is, however, known to not accurately predict the actual GRF of running (Alexander 

et al., 1986; Bullimore and Burn, 2007; Clark and Weyand, 2014). Therefore, more complex 

multi-body mass-spring-damper models (e.g. the two mass-spring-damper model), which have 

been shown to accurately represent the GRF for different running tasks and are typically 
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described by the acceleration of the masses, are required to accurately predict GRF from body-

worn accelerometry.  

The two mass-spring-damper model has been shown to be able to accurately reproduce overall 

GRF profiles for constant speed running (Derrick et al., 2000; Nedergaard, 2017), changes of 

direction (Nedergaard, 2017), and a range of high-intensity running tasks (chapter 3). Unlike 

other more simplistic mass-spring models, the masses in a two mass-spring-damper model 

represent the different parts of the body. In this model, the lower mass, spring and damper, 

represent the support leg, while the upper mass and spring represent the rest of the body 

(Alexander et al., 1986; Derrick et al., 2000). Based on this assumption, the upper mass 

acceleration is determined by the combined movements of the swinging leg, arms, head and 

trunk during ground contact. Since the trunk is the heaviest of these segments (Dempster, 1955) 

and believed to be a major contributor to GRF (Bobbert et al., 1991), trunk accelerometry might 

be used to represent the acceleration of the model’s upper mass. If so, the eight model parameters 

required to reproduce GRF might be estimated from acceleration signals measured at the trunk 

and used to predict GRF. Therefore, this study investigated whether a two mass-spring-damper 

model can be used to predict GRF from trunk accelerations (TA). The aims of this investigation 

were to examine 1) whether model parameters required to replicate trunk accelerometry with a 

two mass-spring-damper model can be used to directly predict GRF, and 2) whether a 

relationship between parameter values required to reproduce TA or GRF exists, to indirectly 

predict GRF. 

4.2 Methods 

4.2.1 Participants and protocol 

Fifteen team sport athletes performed a variety of high-intensity running tasks frequently 

performed in running-based sports, including accelerations, decelerations and running at 

constant speeds ranging from 2 m·s-1 to maximal sprinting, while GRF and trunk accelerations 

were synchronously recorded.  
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4.2.2 Kinetic and accelerometry data collection 

GRF data were collected for a single step on a force platform (9287B, 90x60 cm, Kistler Holding 

AG, Winterthur, Switzerland) at a sampling frequency of 3000 Hz. TA data were collected with 

a tri-axial accelerometer built into a commercial GPS device (OptimEye S5, Catapult 

Innovations, Scoresby, Australia) at a sampling frequency of 100 Hz. Participants wore the GPS 

device in a pocket of a tight-fitting vest on the back of the upper trunk between the Scapulae 

throughout the whole session (figure 2.2 A). GRF and TA data were exported to Matlab (version 

R2016a, The MathWorks, Inc., Natick, MA, USA) and filtered at 50 and 20 Hz respectively, 

after which the resultant GRF and TA were calculated from the three individual force and 

acceleration components respectively for each step. A more detailed description of the data 

collection protocol and procedures is provided in the methods section of chapter 3.  

4.2.3 Directly predicting ground reaction forces from trunk accelerations 

A two mass-spring-damper model (appendix A) was used to replicate the measured TA signal 

for each individual step (figure 4.1) (Nedergaard et al., 2018). TA curves were replicated by 

adjusting the eight natural model parameters (p1, v1, p2, v2, λ, ω1, ω2 and ζ) to fit the model’s 

upper mass acceleration (a1) to the measured TA according to equation 4.1.  

 aଵ = −ωଵ
ଶ ∙ (pଵ − pଶ) + g (4.1) 

In which ω1
 is the upper spring’s natural frequency, p1 and p2 are the relative positions of the 

upper and lower mass respectively, and g is the gravitational acceleration (-9.81 m·s-2). The best 

combination of model parameters to fit a1 to the TA was determined by minimising the root 

mean square error (RMSE; equation 4.2) between modelled a1 and measured TA.  

 RMSE = ඨ∑ ൫aଵ୫୭ୢୣ୪୪ୣୢ(t) − TA୫ୣୟୱ୳୰ୣୢ(t)൯
ଶ୬

୲ୀ

n
 (4.2) 
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In which t is each individual time point of the GRF curve and n the total duration of stance. A 

purpose-written Python code (Python, 2017) using an openly available numerical optimisation 

algorithm (SciPy, 2017) was used to find the solution with the lowest RMSE via a numerical 

optimisation method (appendix B). This optimal set of model parameters was then used to 

calculate the predicted GRF according to equation 4.3.  

 GRF୮୰ୣୢ୧ୡ୲ୣୢ = −
BM ∙ ωଶ

1 + λ
∙ (ωଶ ∙ pଶ + 2 ∙ ζ ∙ vଶ) (4.3) 

Figure 4.1 Diagram of how measured trunk accelerations (TA) were used to directly predict 

ground reaction forces (GRF) with the two mass-spring-damper model. 

4.2.4 Indirectly predicting ground reaction forces from trunk accelerations 

The model parameters following from reproducing GRF and replicating TA as described in 

chapter 3 and 4.2.1 of respectively, were used for a parameter regression analysis (figure 4.2). 

For each parameter, the relationship between values required to replicate GRF and TA were 

investigated across all trials, as well as for each task separate. Optimal parameter values 

following from modelling GRF and TA were plotted per task in a scatter plot for each parameter, 

for all individual trials. Parameter-specific linear model fits were then calculated using the TA 

and GRF parameters as the predictor and response variables respectively. If a moderate linear 

regression was found for a parameter (i.e. R2 > 0.3 (Hopkins et al., 2009)), this regression was 

then used to recalculate the parameter value that followed from replicating TA before calculating 

the predicted GRF.  
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Figure 4.2 Diagram of how measured trunk accelerations (TA) were used to indirectly predict 

ground reaction force (GRF) via a regression analysis. If there was a correlation between the 

modelled upper mass acceleration a1 (replicated TA) and GRF parameter values, this 

relationship was used to recalculate the parameter before calculating the predicted GRF 

profiles. 

4.2.5 Data processing and analysis 

Measured GRF, as well as direct or indirect predicted GRF curves, were normalised to the 

participant’s body mass. Accuracy of the modelled a1 (replicated TA) and predicted GRF profiles 

was evaluated by the curve RMSE during stance relative to the measured TA and GRF 

respectively. RMSE was averaged across all trials and participants for each task, i.e. 

accelerations, decelerations, and running at constant low (2-3 m·s-1), moderate (4-5 m·s-1) and 

high (>6 m·s-1) speeds. The RMSE magnitudes for modelled a1 and predicted GRF was rated as 

being very low (<1 m·s-2; <1 N·kg-1), low (1-5 m·s-2; 1-2 N·kg-1), moderate (5-10 m·s-2; 2-3 

N·kg-1), high (10-15 m·s-2; 3-4 N·kg-1) or very high (>15 m·s-2; >4 N·kg-1). 

4.3 Results 

4.3.1 Direct ground reaction force predictions 

Across tasks, the two mass-spring-damper model could replicate measured TA curves with low 

to moderate errors (table 4.1 and figure 4.3). Mean RMSEs of replicated TA curves were low 

(<5 m·s-2) for accelerations and running at constant speeds, but moderate (<10 m·s-2) for 

deceleration trials. The general shape of the TA profiles could be replicated well, but rapid or 

modest fluctuations in the TA signals were often slightly smoothed in the modelled a1 curves 
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(figure 4.2 A and E). In addition, sharp and high peaks in the acceleration signals were typically 

underestimated in the modelled curves (figure 4.2 B and G). 

In contrast to modelled a1, directly predicted GRF profiles from the following model parameters 

were very poor (figure 4.3). A total number of 53 trials (37 accelerations, 7 decelerations, 1 

moderate and 8 high-speed running trials), for which RMSE was >1000 N·kg-1, was discarded 

before calculating the mean RMSE per task. Despite excluding trials with extremely high errors, 

mean RMSE for predicted GRF profiles was still very high (>4 N·kg-1) across the different tasks 

(table 4.1). Predicted GRF errors increased with running speed and were the highest for running 

at high speeds, accelerations and decelerations. 

Table 4.1 Modelled upper mass acceleration and ground reaction force errors   

 a1 (m·s-2) GRF (N·kg-1) 
 Mean SD Mean SD 

Accelerations (n=189) 3.94 ±1.75 78.19 ±176.30 

Decelerations (n=240) 7.02 ±3.03 38.19 ±79.58 

Constant speed running     

     Low (2-3 m·s-1; n=126) 4.02 ±1.71 9.43 ±10.03 

     Moderate (4-5 m·s-1; n=126) 4.77 ±1.65 21.33 ±67.64 

     High (>6 m·s-1; n=176) 4.59 ±1.89 88.45 ±186.52 

All tasks (n=857) 5.07 ±2.52 49.08 ±128.72 

Root mean square errors (RMSE) between the measured trunk acceleration and 
ground reaction force (GRF) or modelled upper mass acceleration (a1 in m·s-2) 
and GRF (in N·kg-1) respectively. Values are means ± standard deviations (SD) 
for each task. For GRF, trials with RMSE >1000 N·kg-1were discarded, with a 
total of 53 trials, before calculating mean and SD values per task. 
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Figure 4.3 Representative examples of measured trunk accelerations (TA; black solid line) 

with modelled a1 curves (blue dotted line) on the left, and the measured ground reaction force 

(GRF; black solid line) and directly predicted GRF profiles (red dotted line) on the right, 

including the root mean square error (RMSE) between both curves. 
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4.3.2 Indirect ground reaction force predictions 

Although the two mass-spring-damper model could replicate measured TA and GRF profiles 

well on their own, the parameters required to accurately replicate TA strongly differed from the 

parameters required to reproduce measured GRF curves (figure 4.4). If parameter values 

required to reproduce GRF were low for a specific trial, the value required to replicate TA were 

typically very high and vice versa. This was the case for all eight parameters and was 

independent of task. Moreover, there was no consistency in parameter values within any of the 

tasks. Due to the difference between modelled a1 and GRF parameter values, there was no 

relationship found between the two sets of parameters, regardless of task (table 4.2). Since the 

largest R2 value was 0.05 and thus none of the parameters had R2 values larger than 0.3 

(moderate correlation), the linear regressions were regarded as being too small to be used to 

recalculate any of the parameter values.  

Figure 4.4 Scatter plots of the eight model parameters for each individual acceleration (blue 

circles), deceleration (red triangles) and low, moderate and high-speed running (light grey, 

dark grey and black crosses respectively) trial. Parameter values required to model trunk 

accelerations (TA) or ground reaction force (GRF) are plotted on the x-axes and y-axes 

respectively.
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Table 4.2 Linear regressions for the eight model parameters 

 p1 

(m) 
p2 

(m) 
v1 

(m·s-1) 
v2 

(m·s-1) 

ω1 

(N·m-1· 
kg-1) 

ω2 
(N·m-1· 

kg-1) 

λ 
(au) 

ζ 
(au) 

Accelerations (n=189) 0.04 0.05 0.36 1.35 0.09 0.03 0 0.04 

Decelerations (n=240) 0.08 0.07 0.08 0.33 0.16 0.9 1 0.05 

Constant speed running         

     Low (2-3 m·s-1; n=126) 0.21 0 0.03 0.14 0.03 0.38 2.45 5.51 

     Mod. (4-5 m·s-1; n=126) 0.1 0.2 0.05 0.39 1.69 0 1.2 0.4 

     High (>6 m·s-1; n=176) 0.67 0.11 0.06 0.43 0.09 4.19 0.07 0.17 

All tasks (n=857) 0.06 0.01 0.04 0.08 0 0.22 0.11 0 

R2 values (∙10-2) of the linear regressions between parameter values required to model trunk 
accelerations or ground reaction forces, for the eight model parameters. Regressions were 
performed for each task separately, as well as for all tasks and trials combined. Only if R2 > 
0.3 (=30∙10-2) the regression equation was used to recalculate the parameter. 

 

4.4 Discussion 

This study aimed to predict GRF from accelerations measured at the upper trunk, either directly 

or indirectly, using a two mass-spring-damper model. Despite the model’s ability to accurately 

replicate measured TA curves across the different tasks, direct GRF predictions following from 

the modelled a1 parameters were very poor. Furthermore, a relationship between trunk motion 

and GRF (Bobbert et al., 1991) was not reflected in the relationship between model parameters 

required to reproduce TA or GRF profiles, and could thus not be used to indirectly predict GRF 

from TA more accurately. In this discussion, several limitations of both approaches used in this 

study will be highlighted and a number of solutions to systematically improve the quality of 

GRF predictions will be described with reference to appendix C (direct method) and appendices 

D-F (indirect method). Furthermore, the value of using TA for biomechanical load monitoring 

purposes will be discussed. 

4.4.1 Directly predicting ground reaction forces from trunk accelerations 

An essential assumption made in this study is that the model’s upper mass acceleration a1 is 

correctly represented by the measured TA. However, since the upper mass represents multiple 

other segments (swinging leg, arms and head) besides the trunk (Alexander et al., 1986; Derrick 

et al., 2000), TA is known to be a surrogate measure of the combined motion of the model’s 
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upper mass segments. This discrepancy might explain why GRF could not be directly predicted 

from replicated TA parameters. In addition, the measured TA signal is also known to not be an 

accurate representation of the trunk’s CoM acceleration. First, the GPS device in which the 

accelerometer is embedded is worn on the back of the upper trunk between the Scapulae and 

thus not on, or close to the trunk’s CoM. Secondly, despite carefully fitting this GPS unit in a 

tight vest, the measured TA signal is likely to include considerable noise due to wobbling of the 

unit in the pocket of the vest, as well as on the trunk. As a result of these limitations, the measured 

TA signal is likely to considerably differ from the actual acceleration of the trunk segment and 

consequently, from the combined upper mass segments movement. Appendix C shows that the 

measured TA signal indeed substantially deviated from the model’s upper mass acceleration a1 

required to accurately predict GRF. Despite these serious limitations, the unit’s attachment to 

the trunk makes it likely that the measured TA signal contains the trunk’s general motion, which 

might be a better reflection of the model’s upper mass acceleration required to accurately predict 

GRF. However, appendix C also shows that extracting the general trunk motion by fitting a 

simple quadratic function to the measured TA signal and using this as input for the model’s 

upper mass acceleration a1 could not lead to improved GRF predictions. The substantial 

differences between the measured TA and the model’s upper mass acceleration were, therefore, 

considered to be a major reason why GRF could not be predicted from TA directly, using the 

two mass-spring-damper model. 

4.4.2 Indirectly predicting ground reaction forces from trunk accelerations 

As described in chapter 3 and the results of this chapter, for each individual trial a combination 

of model parameters was found to accurately model either GRF or TA profiles. Parameter values 

required to replicate TA were, however, not linearly related to the parameters required to 

reproduce GRF and could thus not be used to predict GRF using an indirect approach. There are, 

however, several limitations to this approach, including 1) task specificity, 2) the parameter 

search window, 3) the model’s freedom, and 4) accuracy of the measured TA signal. These 

issues will here be discussed in more detail, while potential solutions will be suggested and 

explained with reference to appendices D-F.      
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First of all, since this investigation aimed to examine the model’s ability to predict GRF for a 

range of activities that are frequently performed during running-based sports, a variety of 

different tasks was included. Figure 4.4 shows that different movements might require different 

ranges of values for certain parameters. For example, to reproduce GRF for deceleration trials 

the initial position of the model’s upper mass p1 tended to be much lower and a higher initial 

velocity of the lower mass v2 and mass ratio λ were typically required, compared to other tasks 

(figure 4.4). Therefore, the weak relationships between modelled TA and GRF parameters could 

be due to the inclusion of all trials in the regression analysis. These relationships might be 

stronger when task-specific regression analyses are performed, rather than all movements 

combined. Although task-specific parameter regressions were indeed slightly stronger compared 

to those for a combination of all trials, R2 values were still trivial and too small to be used for 

recalculating any of the model parameters and achieve better GRF predictions.        

Secondly, from figure 4.4 it appeared that parameter values required to replicate TA typically 

fell in a different range compared to those required to reproduce GRF. For example, for the 

majority of trials TA could be replicated with a natural frequency of the lower spring ω2 between 

0 and 125 N·m-1·kg-1, while ω2 values required to reproduce GRF typically ranged between 0 

and 250 N·m-1·kg-1 (figure 4.4). As a result, regressions between both sets of parameters were 

very weak. In addition, parameter values often fell outside a physically meaningful range for 

both sets of parameters. The mass ratio λ for example, had values much larger than 10 for a large 

number of trials, which means that the support leg would represent less than 9% of the total body 

mass. Therefore, limiting the search window for parameter values (i.e. set an upper and lower 

bound to the parameters when modelling TA and GRF) might lead to a stronger relationship 

between both parameter sets. If for instance, equally good solutions for replicated TA and 

reproduced GRF exist within a physically meaningful range of parameter values, the relationship 

between both parameter sets might be improved. However, although the parameter space could 

be restricted to a physically meaningful range while maintaining reproduced GRF accuracy, this 

was highly detrimental for replicated TA curves and relationships between both parameter sets 

were still very weak (appendix D). 
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Thirdly, another possible explanation for the absence of a relationship between both sets of 

parameters could be the amount of freedom in the two mass-spring-damper model. All eight 

model parameters are closely related, highly dependent on each other and can adopt a substantial 

range of different values. As a result, it is likely that several combinations of parameters can 

give similarly good results when modelling TA and/or GRF profiles (e.g. as observed for 

reproduced GRF in appendix D). Therefore, restricting the number of free model parameters to 

limit the model’s freedom might improve the relationships for the remaining free parameters. 

For example, if the upper spring’s natural frequency ω1
 would be fixed at a constant value, the 

model’s vertical stiffness would be determined by the natural frequency of the lower spring ω2
 

only. Minor regression increases between both parameter sets were indeed observed when fixing 

either single or multiple parameters at a constant value (appendix E). However, the relationships 

were still very weak and could thus not be used to recalculate parameter values and achieve 

better indirect GRF predictions from TA. 

Finally, the results in this chapter and chapter 3 show that the two mass-spring-damper model 

can accurately reproduce measured TA and GRF profiles when modelled separately. However, 

this chapter also shows that the model cannot be used to predict GRF from TA, either directly 

or indirectly. As discussed above, this discrepancy is likely to be the result of the difference 

between the measured TA signal and the model’s upper mass acceleration a1 required for 

accurate GRF predictions (appendix C). Since multiple combinations of model parameters can, 

however, lead to similarly accurate modelled GRF (appendix D), it is possible that the model 

can use a single set of parameters to simultaneously reproduce measured TA and GRF profiles. 

If this is indeed the case, and the detrimental effects on the modelled TA and GRF curves are 

minimal, this might allow for bridging the dissimilarities between the measured TA and required 

a1. Appendix F, however, shows a single set of model parameters that precisely replicated TA 

while maintaining an accurate GRF did not exist (appendix F), i.e. measured TA and GRF 

profiles could not both be modelled accurately at the same time. It was, therefore, concluded 

that GRF cannot be predicted from TA using a two mass-spring-damper model. 
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4.4.3 Using trunk accelerations for biomechanical load monitoring purposes 

The outcomes of this study have shown that predicting GRF from TA with a simple 

biomechanical model is not straight forward, despite its ability to accurately model a given TA 

or GRF profile. In most running-based sports, TA derived load measures, such as New Body 

Load, Dynamic Stress Load, Forceload and PlayerLoad have been suggested and used to assess 

the whole-body biomechanical loads of training and/or competition (Boyd et al., 2011; Colby et 

al., 2014; Ehrmann et al., 2016; Gaudino et al., 2015; Page et al., 2015). Although these measures 

have been suggested to be strongly related to e.g. total distance covered (Casamichana et al., 

2013; Scott et al., 2013), an underpinning for their biomechanical meaning is yet lacking. TA 

derived measures are based on the assumption that TA is a good representation of the whole-

body CoM acceleration, as well as the assumption that the trunk is the dominant contributor to 

GRF (Bobbert et al., 1991). Accelerations from trunk-mounted accelerometers have, however, 

been shown to poorly represent the whole-body CoM acceleration (Edwards et al., 2018; 

Nedergaard et al., 2017; Wundersitz et al., 2013). Moreover, it is established that the high-

frequency impacts of landing are reduced in the upper body due to shock attenuation via active 

strategies (e.g. lower limb joint orientation and stiffness regulation) (Arampatzis et al., 1999; 

Bobbert et al., 1992; Lindsay et al., 2014), as well as the shock absorption of the passive 

structures in the musculoskeletal system (Hamill et al., 1995; Lafortune et al., 1996). The trunk’s 

large contributions to GRF are thus likely due to its large mass rather than high accelerations. 

Information required to precisely predict GRF is, therefore, only partly described by the TA 

signal and additional segmental accelerations (e.g. shank and thigh accelerations) are probably 

required to estimate GRF from body-worn accelerometers. Future research should, therefore, 

investigate whether information about other segmental accelerations (which allows for 

alternative approaches to be explored) could be used to predict GRF more accurately. Moreover, 

one should to be very cautious when interpreting acceleration signals of the trunk and derived 

load measures as an accurate estimate of biomechanical loading, as these metrics are unlikely to 

truly reflect the overall external forces experienced by the body. 
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4.4.4 Limitations 

For the studies described in chapters 3 and 4, a cohort of team sport athletes was recruited with 

varying sports backgrounds, training status and sex. This variability could form a limitation to 

the results observed. For example, participants could differ in skill or familiarity with the various 

running activities, fatigue prior to or during the session, training status and background (e.g. 

strength vs. endurance trained) and/or sex-dependent muscle-tendon properties. These factors 

may have affected an individual’s movement execution and physical behaviour during the tasks 

performed. However, since GRF predictions from the two mass-spring-damper model were trial 

specific, it is unlikely that these factors have affected the GRF predictions. In fact, successful 

trial-specific GRF predictions would allow for the further examination of the effects of e.g. 

muscle-tendon properties or training status on movement strategies and overall loading of the 

body. Participants were thus deliberately recruited without a tight control for the factors 

mentioned above, to eventually allow for within- and between-participant investigations. 

The approach described in this chapter used an accelerometer built into a commercial GPS 

device to predict GRF for various running tasks. The validity of this approach (and other similar 

methods) is, however, dependent on the validity and reliability of the accelerometer used. 

Although an accelerometer validation was beyond the scope of this study, previous research has 

demonstrated good reliability and accuracy of commercial wearable accelerometers (including 

the one used in the present study) for a range of sport-specific movements (Boyd et al., 2011; 

Scott et al., 2015; Simons and Bradshaw, 2016) (see chapter 2.2.2 for a more detailed discussion 

of accelerometer validity and reliability). Nevertheless, studies aiming to estimate 

biomechanical loading from body-worn accelerometers should consider the validity and 

reliability, either within or between units, as a potential source of inaccuracy for the quantified 

loads. 

4.5 Conclusion 

This study shows that the two mass-spring-damper model could replicate measured TA well, but 

direct and indirect GRF predictions were poor. Since GRF (which is determined by complex 
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multi-segmental movements) cannot be predicted from TA with a two mass-spring-damper 

model, accelerations of the trunk alone are probably insufficient to accurately predict GRF in 

running-based sports. Therefore, additional information (e.g. accelerations of other segments) is 

likely required to measure and monitor whole-body biomechanical loading in non-laboratory 

settings.  
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Chapter 5:  Validating ground reaction forces estimated 

from multiple segmental accelerations 

 

Abstract: Chapter 4 has shown that acceleration signals from the trunk alone are unlikely to be 

sufficient to accurately predict ground reaction forces (GRFs). Since body-worn accelerometers 

are commonly used in sports to measure accelerations of various body segments, an alternative 

expression of Newton’s second law might be used to estimate GRF from multiple segmental 

accelerations. However, it is unknown whether this approach can be used to accurately estimate 

GRF for activities that are frequently undertaken during running-based sports and/or what the 

minimal required number of segments is. Therefore, this study aimed to estimate GRF from 

multiple segmental accelerations for dynamic and high-intensity running tasks and determine 

the minimal number of segments required. GRF profiles for accelerations, decelerations, 90° 

cuts and running at constant low, moderate and high speeds were estimated as the sum of the 

product of all fifteen segmental masses and accelerations, or a reduced number of segments. 

Errors for GRF profiles and loading characteristics estimated from fifteen segmental 

accelerations varied from low to very high between the different tasks. Moreover, errors 

substantially increased for all tasks when the number of segments was reduced. These results 

show that it is unlikely that one or several segmental accelerations can provide accurate and 

meaningful estimates of whole GRF waveforms to assess whole-body biomechanical load across 

various dynamic and high-intensity activities, using a direct mechanical approach. 

This study was published in the Journal of Science and Medicine in Sports (Verheul et al., 2018). 
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5.1 Introduction 

Accelerometers embedded in commercial trunk-worn GPS devices are popular for assessing 

biomechanical training and competition loads in running-based sports. Based on the assumption 

that accelerations of the trunk are a good representation of whole-body centre of mass (CoM) 

accelerations, trunk accelerometry derived load measures (e.g. New Body Load, Dynamic Stress 

Load, PlayerLoad, Force Load) have been used to quantify and evaluate whole-body 

biomechanical loading (Boyd et al., 2011; Colby et al., 2014; Ehrmann et al., 2016; Gaudino et 

al., 2015; Page et al., 2015). However, evidence relating accelerations of the trunk to ground 

reaction forces (GRF), a well-established measure of whole-body load, is lacking. In fact, it has 

been shown that accelerations of individual segments (including the trunk) cannot accurately 

represent whole-body CoM accelerations and/or directly predict GRF during straight running at 

constant speeds (Edwards et al., 2018; Nedergaard et al., 2017; Pavei et al., 2017a; Raper et al., 

2018; Wundersitz et al., 2013) and side-cutting (Nedergaard et al., 2017; Vanrenterghem et al., 

2010; Wundersitz et al., 2013). Moreover, chapter 4 has shown that trunk accelerometry cannot 

be used to drive a two mass-spring-damper model to predict GRF, partly due to its deviations 

from the model’s upper mass acceleration required for accurate GRF predictions. Acceleration 

signals from the trunk or other individual segments, therefore, appear to be insufficient to 

accurately estimate GRF. 

Body-worn accelerometers are commonly used in sports to measure accelerations of various 

body segments (Camomilla et al., 2018; Chambers et al., 2015). Since GRF can be defined as 

the sum of the product of segmental mass and CoM accelerations of all body segments, multiple 

simultaneously measured segmental accelerations might be used to estimate GRF. Such an 

approach could provide a way by which the contribution of multiple segmental accelerations to 

the GRF can be examined systematically. Previous studies have indeed shown that this method 

can be used to estimate GRF for constant speed running from seven (Bobbert et al., 1991) or 

eleven (Pavei et al., 2017b) segmental accelerations derived from marker trajectory data 

measured with a laboratory-based motion capture system. However, it is yet completely 

unknown whether GRF for other activities that are frequently undertaken in running-based sports 
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(e.g. rapidly accelerating, decelerating, cutting, sprinting (Vigh-Larsen et al., 2018)) can be 

accurately estimated from segmental accelerations and/or what the minimal required number of 

segments is.  

If simultaneously measured segmental accelerations can be used to estimate GRF, this might 

eventually allow GRF to be estimated from body-worn accelerometers in non-laboratory settings 

and provide a meaningful measure of whole-body biomechanical loading. Therefore, the aims 

of this study were 1) to investigate whether GRF can be estimated from multiple segmental 

accelerations for a variety of dynamic and high-intensity tasks frequently performed during 

running-based sports, and 2) to determine the minimal number of segments required. 

5.2 Methods 

Ethical approval for this study was granted by Liverpool John Moores University ethics 

committee, with reference number 17/SPS/043. Data from the cohort and data collection 

described below were used for the studies described in this chapter, as well as chapter 6. 

5.2.1 Participants and protocol 

Fifteen team sports athletes participated in this study (12 males and 3 females, age 23±4 yrs, 

height 178±9 cm, body mass 73±10 kg). All participants were healthy at the time of testing and 

were physically active for at least three hours per week (sports participation 7.5±4.5 hrs per wk). 

Prior to data collection, participants provided written informed consent according to Liverpool 

John Moores University ethics regulations.  

After a standardised warm-up, participants performed a variety of dynamic and high-intensity 

running tasks including accelerations, decelerations, 90° cuts, and running at different constant 

speeds ranging from 2 m·s-1 to maximal sprinting (~7-9 m·s-1; participant-specific). Participants 

were instructed to land with one foot on a force platform embedded in the ground, and every 

task was performed five times for each leg. Participants were instructed to land with either their 

right or left foot on the force platform for a single step during each trial, but trials in which 

participants excessively targeted the force platform were excluded. Acceleration trials were 

performed from standstill to sprinting speed, while decelerations were performed from sprinting 
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to immediate standstill. For the 90° cutting tasks, participants approached the force platform at 

a self-selected moderate running speed and sharply cut to the side under a 90° angle on the force 

platform. Running trials were performed at a constant low (2-3 m·s-1), moderate (4-5 m·s-1) or 

high running speed (>6 m·s-1), including maximal sprinting. Running speeds were measured 

with photocell timing gates (Brower Timing Systems, Draper, UT, USA) which were positioned 

3 m apart at 1.5 m before and after the force platform. Running speed were controlled by giving 

verbal feedback to speed up or slow down after each trial. Only trials within a ± 5% range of the 

target speed were included.  

5.2.2 Kinematic and kinetic data collection 

During the trials, full-body kinematic data were collected using a seventy-six retro-reflective 

marker set attached to anatomical landmarks on the body (figure 5.1 A; appendix G). Three-

dimensional kinematic and kinetic data were synchronously recorded with ten infrared cameras 

(Qqus 300+, Qualisys Inc., Gothenburg, Sweden) sampling at 250 Hz, in combination with a 

force platform (9287B, 90x60 cm, Kistler Holding AG, Winterthur, Switzerland) embedded in 

the ground, sampling at 1500 Hz. Marker positions and ground reaction forces (GRF) were 

recorded and tracked using Qualisys Track Manager Software (QTM version 2.16, Qualisys Inc., 

Gothenberg, Sweden) (figure 5.1 B). A static calibration was recorded of participants standing 

in the anatomical position at the start of each session. After tracking, kinematic and kinetic data 

were exported to Visual3D (v6.01.06, C-Motion, Germantown, MD, USA) where static 

calibration trials were used to build a fifteen segment (head, trunk, pelvis, upper arms, forearms, 

hands, thighs, shanks and feet) six-degree-of-freedom model (figure 5.1 C). Local segment 

coordinate systems and joint centres were determined with a Visual3D in-built algorithm 

(Schwartz and Rozumalski, 2005). Segment dimension and inertial properties were based on 

Dempster’s regression equations (Dempster, 1955) and represented as geometric volumes 

(Hanavan, 1964) (figure 5.1 C). This model was then applied to all the running trials and data 

were processed in Visual3D, as well as exported to Matlab (version R2017b, The MathWorks, 

Inc., Natick, MA, USA) for further processing and analysis.  
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Figure 5.1 A: A seventy-six retroreflective marker set was attached to anatomical landmarks 

and marker trajectories were recorded during the trials. B: Tracked marker trajectories in the 

Qualisys Tracking Manager (QTM) software for an example running trial (top) and static 

calibration trial (bottom). C: Marker trajectories were used to build a fifteen-segment 

kinematic model in Visual3D. 

5.2.3 Data processing and analysis 

Marker trajectories and force platform data were filtered with a 2nd order Butterworth low-pass 

filter at 20 Hz and 50 Hz respectively. Trunk defining marker trajectories were, however, filtered 

at 10 Hz based on a sensitivity analysis for optimal GRF prediction (appendix H). For each trial, 

touch-down and take-off from the force platform were identified by a 20 N threshold of the 

vertical GRF and resultant GRF was calculated from the three individual force components (Fx, 

Fy, Fz). Centre of mass (CoM) position for each segment was used to define segment movements. 

Segmental accelerations were calculated as the double differentiation of CoM motion along the 
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three axes of the lab (x-y-z). Resultant GRF curves were then estimated as the sum of the product 

of each segmental mass and CoM acceleration in the three directions, according to equation 5.1. 

GRFୣୱ୲୧୫ୟ୲ୣୢ = ඩቌ  ൫a୬,୶ ∙ m୬൯

ଵ,ଶ,…ଵହ

୬ୀଵ

ቍ

ଶ

+ ቌ  ൫a୬,୷ ∙ m୬൯

ଵ,ଶ,…ଵହ

୬ୀଵ

ቍ

ଶ

+ ቌ  ൫a୬, ∙ m୬൯

ଵ,ଶ,…ଵହ

୬ୀଵ

+ g ∙ BMቍ

ଶ

 (5.1) 

In which a is the segmental acceleration in x, y or z direction, m the segmental mass, n the 

number of segments included, g the gravitational acceleration (-9.81 m·s-2) and BM the total 

body mass. To determine the minimal number of segments required to accurately estimate GRF, 

all different segment combinations (per given number of segments) were used to estimate GRF 

data. A total of 32,676 unique combinations were analysed with a minimum of one and a 

maximal of fifteen segments. For combinations with less than all fifteen segments, masses of 

the segments not included were added to the other segments according to figure 5.2 to maintain 

total body mass. For each of the 32,676 combinations, the mean root mean square error (RMSE) 

of estimated GRFs for all participants, tasks and trials was calculated. The combination with the 

lowest mean RMSE across all tasks and trials for a given number of segments was then selected 

and used for further analysis.  

Figure 5.2 To maintain total body mass, segment masses not included in a combination were 

redistributed. Body parts were defined as the core (head, trunk, pelvis), the left and right arm 

(hand, forearm, upper arm), and the left and right leg (foot, shank, thigh). For example, if a 

combination did not include the shank, its mass was equally distributed over the foot and thigh 

(1), core segments if neither the thigh or foot were included (2), or all segments in the 

combination if no core segments were included either (3). 
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Measured and estimated GRF curves were normalised to each participant’s body mass. Accuracy 

of the estimated GRF profiles was evaluated as the curve RMSE according to equation 5.2.  

 RMSE = ඨ
∑ (GRFୣୱ୲୧୫ୟ୲ୣୢ(t) − GRF୫ୣୟୱ୳୰ୣୢ(t))ଶ୬

୲ୀ

n
 (5.2) 

In which t is each individual time point of the GRF curve and n the total duration of stance. In 

addition, relative RMSEs (as well as GRF loading characteristics) were determined according 

to equation 5.3 to allow for comparison between tasks with different GRF magnitudes. 

 

 

RMSE୰ୣ୪ୟ୲୧୴ୣ =
ඩ∑ ൬

GRFୣୱ୲୧୫ୟ୲ୣୢ(t) − GRF୫ୣୟୱ୳୰ୣୢ(t)
GRF୫ୣୟୱ୳୰ୣୢ(t)

൰
ଶ

୬
୲ୀ

n
 ∙  100% 

 

(5.3) 

In addition, relevant GRF loading characteristics impulse, impact peak and loading rate were 

used to assess estimated GRF curve accuracy, as described in chapter 3.2. Since marker 

vibrations caused multiple smaller peaks after touch-down for some trials, only impact peaks 

>500 N were included in the analysis. Estimated curve RMSE and GRF loading characteristic 

errors were then averaged across all trials and participants for each task. RMSE was rated as 

being very low (<1 N·kg-1), low (1-2 N·kg-1), moderate (2-3 N·kg-1), high (3-4 N·kg-1) or very 

high (>4 N·kg-1). RMSE values were analysed for all possible combinations of segments per 

task, as well as all trials combined, to determine the best combination (i.e. lowest mean RMSE 

across trials) for each number of segments. Based on meaningful performance or injury related 

differences (Bazuelo-Ruiz et al., 2018; Bezodis et al., 2017; Hunter et al., 2005), the magnitude 

of GRF loading characteristic errors was rated as being very low (<5%), low (5-10%), moderate 

(10-15%), high (15-20%) or very high (>20%). Linear correlation analyses were performed to 

examine the relationship between estimated and measured impulses, impact peaks and loading 

rates per task, as well as all trials combined to examine the generalisability of GRF estimates 

across tasks. Correlations were rated as very weak (R2<0.1), weak (R2=0.1-0.3), moderate 

(R2=0.3-0.5), strong (R2=0.5-0.7), very strong (R2=0.7-0.9) or extremely strong (R2=0.9-1) 

(Hopkins et al., 2009). In addition, Bland-Altman analyses (Bland and Altman, 2010) were 
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performed across tasks to explore the bias (mean difference) and 95% limits of agreement 

between the estimated and measured GRF loading characteristics.  

5.3 Results 

5.3.1 Estimated ground reaction force from fifteen segments 

Accuracy of estimated GRF profiles from fifteen segmental accelerations (full-body) varied 

across tasks (figure 5.3; table 5.1). Overall estimated curve errors (RMSE) were low for running 

at low speeds and moderate for accelerations, 90° cuts and moderate-speed running. However, 

mean RMSE was very high for decelerations and high-speed running.   

Figure 5.3 Swarm plot of the root mean square errors (RMSE) for ground reaction force 

(GRF) curves estimated from fifteen segmental accelerations. Inset: representative measured 

(black solid line) and estimated (red dashed line) GRF profiles, together with RMSE values for 

all acceleration (n=167), deceleration (n=162), 90° cut (n=171), low (n=158), moderate 

(n=157) and high-speed running (n=141) trials. 
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Accuracy of estimated GRF loading characteristics varied between the different variables and 

tasks (table 5.1). Impulses were accurately estimated with very low errors for 90° cuts and 

running at constant low and moderate speeds, low errors for accelerations, and moderate errors 

for decelerations and running at high speeds. Similarly, impact peaks were estimated with low 

to moderate (9.2-15%) errors for all tasks, except accelerations, which had very high (28.5%) 

impact peak errors. Loading rate errors however, were very high (20.1-42.8%) across all tasks. 

Correlations and agreements between measured and estimated GRF loading characteristics were 

dependent on task. Impulses had extremely strong correlations, with a small bias and 95% 

confidence interval of the limits of agreement (-0.04 to 0.45 N·s·kg-1) (figure 5.4 A and D; table 

5.1). For impact peaks however, there was a large variation of the differences with limits of 

agreement ranging from -12.6 to 8.4 N·kg-1, despite the very strong correlation and small bias 

(figure 5.4 B and E). Furthermore, measured and estimated loading rates had a strong correlation 

(R2 = 0.68) but a large bias and limits of agreement (-985 to 397 N·kg-1·s-1) (figure 5.4 C and F). 

Table 5.1 Estimated ground reaction force curve and loading characteristics errors 

  
RMSE Impulse error 

Impact peak 
error 

Loading rate 
error 

 N·kg-1 % N·s·kg-1 % R2 N·kg-1 % R2 N·kg-1·s-1 % R2 

Accelerations (n=166) 
2.82 8.4 0.25 9.1 

0.89 
3.27 28.5 

0.21 
229 33.2 

0.36 
±0.7 ±14 ±0.1 ±4 ±2.8 ±33 ±264 ±27 

Decelerations (n=161) 5.77 6.1 0.26 11.1 
0.94 

7.68 15 
0.73 

380 20.1 
0.49 

±1.8 ±8.8 ±0.1 ±6 ±5.5 ±9 ±404 ±16 

90° Cuts (n=171) 2.67 3.3 0.21 3.8 
0.98 

3.33 9.8 
0.75 

234 24.5 
0.60 

±0.7 ±4.1 ±0.1 ±2 ±2.9 ±8 ±210 ±18 

Constant speed running            

     Low (2-3 m·s-1; n=157) 1.62 1.8 0.09 2.3 
0.96 

2.22 13.8 
0.64 

173 33 
0.42 

±0.4 ±2 ±0.06 ±2 ±2.3 ±22 ±101 ±13 

     Mod. (4-5 m·s-1; n=157) 2.48 3.1 0.16 4.6 
0.93 

1.96 9.2 
0.85 

281 34 
0.53 

±0.6 ±5.7 ±0.1 ±2 ±1.5 ±8 ±174 ±14 

     High (>6 m·s-1; n=141) 4.35 6.4 0.26 10.4 
0.77 

3.52 11.9 
0.56 

661 42.8 
0.12 

±1.3 ±7.6 ±0.2 ±12 ±3.5 ±13 ±419 ±21 

All tasks (n=953) 
3.26 4.8 0.20 6.8 

0.99 
4.00 13.1 

0.88 
323 29.3 

0.68 
±1.7 ±8.3 ±0.1 ±7 ±4.1 ±15 ±326 ±19 

Root mean square error (RMSE), impulse, impact peak and loading rate errors of the ground 
reaction force (GRF) estimated from fifteen segmental accelerations, for the different tasks. 
Values are means ± standard deviations and either absolute or relative errors compared to the 
measured GRF. Correlations (R2) were determined per task as well as for all trials combined. 
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Figure 5.4 Correlation (A-C) and Bland-Altman (D-F) plots between measured and estimated 

GRF loading characteristics impulse, impact peak and loading rate, from fifteen segments. 

5.3.2 Segment reductions 

The best combinations of segments across all tasks for each given number of segments are shown 

in table 5.2. Although GRF estimated from a single segment was the best across tasks from trunk 

accelerations, mean RMSEs were very high. Furthermore, the trunk was part of all combinations 

of segments, and thus the main contributor to overall GRF, followed by the thighs, head, shanks, 

arms, feet and pelvis (in descending order of importance). 

Reducing the number of segmental accelerations to estimate GRF substantially increased RMSE 

and loading characteristics errors for all tasks (figure 5.5; table 5.2). To achieve estimated GRF 

errors that were moderate or better (<3 N·kg-1) for at least 50% of the trials, a minimum of two 

and three segments was required for running at low and moderate speeds respectively. For more 

dynamic tasks however, a minimum of eleven (accelerations) and eight (90° cuts) segments was 

needed to estimate GRF with moderate errors for at least half the trials. In addition, for the high-

intensity tasks (decelerations and running at high speeds) the majority of trials and combinations 

resulted in very high errors, regardless of the number of segments used. Likewise, impulse, 
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impact peak and loading rate errors substantially increased for all tasks when the number of 

segmental accelerations was reduced (figure 5.5).  

Table 5.2 Combinations of segments with the lowest root mean square errors for each number 
of segments 

  
RMSE  
(N·kg-1) 

# Segments in the combination Mean SD 

1 Trunk 6.76 ±3.62 

2 Trunk + thigh 5.91 ±3.17 

3 Trunk + thighs 4.54 ±2.48 

4 Trunk + thighs + pelvis 4.36 ±2.47 

5 Trunk + thighs + pelvis + head 4.00 ±1.94 

6 Trunk + thighs + pelvis + shanks 3.76 ±1.81 

7 Trunk + thighs + shanks + head + upper arm  3.61 ±1.66 

8 Trunk + thighs + shanks + head + upper arm + forearm  3.49 ±1.73 

9 Trunk + thighs + shanks + head + upper arms + forearm  3.42 ±1.75 

10 Trunk + thighs + shanks + head + upper arms + forearms  3.37 ±1.74 

11 Trunk + thighs + shanks + head + upper arms + forearms + hand  3.31 ±1.73 

12 Trunk + thighs + shanks + head + upper arms + forearms + hand + foot 3.28 ±1.72 

13 Trunk + thighs + shanks + head + upper arms + forearms + hand + feet 3.26 ±1.71 

14 Trunk + thighs + shanks + head + upper arms + forearms + hands + feet 3.26 ±1.71 

15 Trunk + thighs + shanks + head + upper arms + forearms + hands + feet + pelvis 3.26 ±1.72 

Combinations of segments with the lowest mean root mean square errors (RMSE) across 
participants, tasks and trials, for each number of segments. If only one of two segments was 
included in a combination (e.g. thigh or foot rather than thighs or feet), this was the segment 
on the side of the support leg. 
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Figure 5.5 Root mean square errors (RMSE), impulse, impact peak and loading rate errors for estimated GRF profiles for each task. Bars represent the percentage of trials 

(primary y-axis) within the very low (<1 N∙kg-1), low (1-2 N∙kg-1), moderate (2-3 N∙kg-1), high (3-4 N∙kg-1) or very high (>4 N∙kg-1) error boundaries, and black dots 

represent the mean errors (secondary y-axis), for each given number of segments. 
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5.4 Discussion 

5.4.1 Estimating ground reaction forces from fifteen segments 

The aim of this study was to estimate whole GRF waveforms from segmental accelerations for 

a variety of dynamic and high-intensity running tasks that are frequently performed during 

running-based sports. From all fifteen body segments, overall GRF profiles as well as specific 

loading characteristics were estimated with varying accuracy across tasks. Overall loading errors 

(RMSE and impulse) for example, were considerably lower for running at low and moderate 

speeds (~2-5%) compared to the higher intensity tasks (decelerations, high-speed running) (~6-

12%). Similarly, impact peak and loading rate errors ranged from ~9% for the lower intensity 

tasks to >40% for higher intensity tasks (figure 5.4 E and F). Meaningful performance or injury 

related differences in loading characteristics can, however, be as small as ~3-10% (Bazuelo-

Ruiz et al., 2018; Bezodis et al., 2017; Hunter et al., 2005). Errors of the magnitude observed in 

this study might, therefore, already rule out certain applications of monitoring GRF estimated 

from full-body segmental accelerations. The mechanical approach to estimate GRF used in this 

study, therefore, has limited validity to assess whole-body biomechanical loading for dynamic 

and high-intensity activities. 

Estimated GRF results in this study are comparable to other laboratory-based studies aiming to 

predict GRFs from marker trajectory data using a mechanical approach. The low impulse errors 

for running at low and moderate speeds (<5%) for example, are similar to the low vertical 

impulse errors of <1% for running at 1.94-5.56 m·s-1 reported by Pavei et al. (2017b), who 

estimated GRFs from whole-body CoM accelerations estimated from marker trajectory data 

using an eleven-segment kinematic model. Likewise, the estimated impact peak errors of ~9.2% 

for constant moderate-speed running are comparable to the <10% impact peak errors for running 

at 3.6-5.3 m·s-1 reported by Bobbert et al. (1991), who estimated GRF from a seven-segment 

model and used the same mechanical approach as this study. Moreover, Udofa et al. (2016) 

modelled GRF from marker trajectory data using a two-mass model and found a correlation of 

R2=0.82 between measured and modelled impact peaks for running at speeds ranging from 3 to 

6 m·s-1, similar to the very strong to extremely strong correlations (R2=0.77-0.96 for low-high-
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speed running) found in the current study. Despite these similarities, however, this study extends 

beyond other studies in that similar results can also be achieved for a range of high-intensity and 

dynamic running activities frequently undertaken during running-based sports. In addition, 

previous studies did not include the mediolateral and anteroposterior components of acceleration 

and GRF (Bobbert et al., 1991; Udofa et al., 2016), utilised small sample sizes of one or a few 

participants (Bobbert et al., 1991; Pavei et al., 2017b; Udofa et al., 2016) and/or investigated 

running on a treadmill rather than overground (Pavei et al., 2017b; Udofa et al., 2016), all of 

which limits their ability to translate their findings from the lab to an applied sport setting. 

Estimated GRF errors in this study are solely due to measurement and methodological 

inaccuracies. The differences in estimated GRF accuracy observed between tasks in this study 

(figures 5.2 and 5.4; table 5.1) might thus be explained by the substantially higher impacts of 

landing in decelerations and high-intensity running. The hard collisions with the ground 

experienced during these tasks likely cause considerable marker movement and vibrations due 

to soft-tissue artefact (Camomilla et al., 2017), leading to increased over- or underestimation of 

the actual segmental CoM accelerations. For high-intensity tasks especially, the rapid 

accelerations of the body segments just after touch-down (for the lower limbs especially) are 

substantial, leading to considerable marker movement and vibrations. During less intense tasks, 

such as low-speed running however, impact accelerations are much less severe and thus less 

likely to cause excessive marker movement. Consequently, marker trajectory-based segment 

positions and derived accelerations, as well as resulting GRF estimates, are more accurate for 

these lower intensity tasks. This could explain the relatively low RMSE and GRF loading 

characteristics errors for low and moderate-speed running observed in the present study, 

compared to the substantially higher errors for decelerations and high-speed running. 

In most running-based sports, the dynamic and high-intensity movements examined in this study 

are regularly performed (Dalen et al., 2016; Datson et al., 2018; Vigh-Larsen et al., 2018). The 

musculoskeletal demands of these tasks are high (Akenhead et al., 2013; Harper and Kiely, 2018; 

Kyröläinen et al., 2005) and thus comprise a large amount of the total biomechanical loads 
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experienced during training and competition. Therefore, highly accurate estimates of GRF 

loading characteristics across different tasks (including decelerations and running at high 

speeds) are essential to explore and understand the biomechanical demands of training in greater 

detail. As discussed above however, the loading characteristics errors observed in this study 

might already rule out several performance and injury related applications of monitoring GRF. 

Therefore, the strong to extremely strong correlations between estimated and measured GRF 

characteristics found in this study (figure 5.4; table 5.1) could be used to recalculate and improve 

the estimated loading characteristics to quantify the biomechanical loads of training more 

accurately. 

5.4.2 Segment reductions 

As simultaneously measuring the accelerations of fifteen segments outside laboratory settings is 

currently unlikely to be feasible, this study examined the effects of reducing the number of 

segments and the minimal number of segments required to accurately estimate GRF. When the 

number of segmental accelerations was reduced to ten segments (i.e. excluding hands, feet and 

pelvis), errors already substantially increased for all tasks (figure 5.5). Previous studies have 

reported similar findings of considerably decreased accuracy in whole-body CoM estimates (and 

thus GRF) for constant speed running (Gill et al., 2017; Pavei et al., 2017a), side-cutting 

(Vanrenterghem et al., 2010), and jumping, kicking and throwing (Jamkrajang et al., 2017), 

when the number of segments was only slightly reduced. Furthermore, the very high errors 

observed in this study for GRF estimated from one segment (i.e. the trunk) are in line with other 

studies which reported that individual segmental accelerations cannot be used to accurately 

estimate GRF for straight running at constant speeds (Nedergaard et al., 2017; Pavei et al., 

2017a; Raper et al., 2018) and side-cutting (Nedergaard et al., 2017; Vanrenterghem et al., 2010). 

Given the mixed results for GRF profiles estimated from fifteen segments in this study, as well 

as the increased errors from a reduced number of segments observed, it is unlikely that a reduced 

number of segmental accelerations can be used to accurately estimate GRF across various 

dynamic and high-intensity running tasks. Consequently, practically all segmental accelerations 

are required to measure and monitor the whole-body biomechanical loads of training. 
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5.4.3 Using accelerometers to estimate ground reaction forces  

A limitation of this study is that segmental accelerations used to estimate GRF were derived 

from marker trajectory data recorded with a three-dimensional motion capture system. Similar 

to force platforms, such systems are not typically available in the field and if they are, data 

collection is laborious and unpractical. In contrast to force platform and motion capture 

technologies however, inertial measurement units (IMUs), such as accelerometers, are 

commonly used in the field. These units are applied in most sports to measure and monitor 

various training load metrics (Cardinale and Varley, 2017), and have been widely used to 

identify sport-specific movements and evaluate performance (Blair et al., 2018; Camomilla et 

al., 2018; Chambers et al., 2015). Moreover, technological improvement have allowed for 

accelerometers to be embedded into body-worn devices, such as watches (Adams et al., 2016), 

eyeglasses (Amft, 2017), GPS devices (Boyd et al., 2011) and even garments (Amft, 2017; 

Düking et al., 2016). Given their widespread use and relatively easy accessibility, accelerometers 

might, therefore, offer a potential way to simultaneously measure multiple segmental 

accelerations required to estimate GRF in non-laboratory setting, providing signals accurately 

reflect the actual segmental accelerations. 

An important requirement for GRF to be accurately estimated from segmental accelerations is 

that measured signals correctly represent the actual segment CoM accelerations. If not, GRF 

cannot be estimated accurately and errors will increase with increasing accelerometry 

inaccuracies. Segment CoM accelerations are, however, known to be difficult to measure 

accurately, even from ‘gold-standard’ motion capture, as evidenced by the findings in this study. 

These inaccuracies can mainly be attributed to the limitations of motion capture techniques (e.g. 

marker movement and vibrations due to soft tissue artefacts) and incorrect estimates of 

segmental inertial properties, such as standardised segment dimensions and masses based on 

cadaver experiments (Dempster, 1955). Although the effects of such individual factors may only 

be minimal, an accumulation of errors can lead to considerable inaccuracies. Likewise, 

accelerometry signals are likely to deviate substantially from the actual segment’s CoM 

acceleration due to their positioning away from the segment’s CoM, soft tissue artefacts and, 
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with dimensions of current devices being ~50·90 mm and weighing ~50-150 g, wobbling of the 

units themselves. For example, accumulated trunk-accelerometry derived loads of running, 

agility and tackling activities have been shown to be largely dependent on the means of 

accelerometer attachment to the trunk (McLean et al., 2018). In addition, exploratory work with 

data from this study showed that acceleration signals measured with accelerometers placed on 

the shank, thigh and pelvis deviated substantially from segmental CoM accelerations derived 

from marker trajectory data (appendix I). These results support previous findings of deviations 

between accelerometry and motion capture derived segmental accelerations (Edwards et al., 

2018; Wundersitz et al., 2015a, 2015b). Future work should, therefore, investigate whether these 

limitations can be overcome (e.g. by improving unit placement or fitting) and more accurate 

measurements of segmental CoM accelerations can be achieved. Until such research has been 

performed though, body-worn accelerometers are unlikely to provide valid estimates of whole 

GRF waveforms for dynamic and high-intensity tasks frequently performed in running-based 

sports, using a direct mechanical approach. 

5.5 Conclusion    

This study shows that the accuracy of GRF profiles and loading characteristics estimated from 

full-body segmental accelerations is dependent on the type of task examined and the number of 

segments used. It is, therefore, unlikely that one or several segmental accelerations can provide 

accurate and meaningful estimates of whole GRF waveforms across tasks for biomechanical 

load monitoring purposes, using a direct mechanical approach. More complex analyses are, 

therefore, likely required to provide further insight in the feasibility of using segmental 

accelerations to assess external whole-body loads in running-based sports. 
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Chapter 6:  Identifying key segmental contributions to 

ground reaction force features 

 

Abstract: Chapter 5 has shown that one or several segmental accelerations are unlikely to be 

sufficient for estimating whole ground reaction force (GRF) waveforms, across dynamic and 

high-intensity running tasks. Nevertheless, identifying acceleration characteristics associated 

with specific GRF features could provide further insight in the feasibility of using segmental 

accelerations to assess whole-body biomechanical loading. Therefore, this study used principal 

component analysis (PCA) to identify key segmental contributions to GRF. A combined PCA 

was performed on segmental accelerations of all fifteen body segments, for accelerations, 

decelerations, 90° cuts and running at constant low, moderate and high speeds. Segmental 

accelerations were then reconstructed and GRFs calculated from each principal component (PC). 

The first PC primarily explained between-task magnitude variability of segmental acceleration 

and GRF impulse, while the second PC highlighted magnitude and timing differences across 

tasks in high-frequency acceleration and GRF characteristics. Although the first five PCs 

described the most important GRF features, higher PCs primarily explained segmental 

contributions to the overall GRF magnitude. These findings show that key segmental 

contributions to specific GRF features, as well as the relative importance of these characteristics 

in different running activities, are highly complex and task-specific. Therefore, the value of 

using segmental accelerations, or even distinct components, to assess whole-body 

biomechanical loads across tasks frequently performed during running-based sports, is likely 

limited.   
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6.1 Introduction 

Chapter 5 has shown some potential of using full-body segmental accelerations to estimate 

whole GRF waveforms, using a direct mechanical approach. However, simultaneously 

measuring fifteen segmental accelerations in the field on a daily basis is currently unlikely to be 

feasible. Moreover, estimating GRF profiles and loading characteristics from less than fifteen 

segments (chapter 5), as well as measuring segmental centre of mass (CoM) accelerations from 

body-worn accelerometers instead of a ‘gold-standard’ motion capture system (appendix I), were 

shown to substantially reduce the accuracy of GRF estimates. These findings suggest that whole 

GRF profiles are unlikely to be estimated with accuracies sufficient for biomechanical load 

monitoring purposes in the field, across different tasks that are frequently performed during 

running-based sports. However, the different approaches described in the previous chapters 

aimed to estimate complete GRF waveforms from a number of segmental acceleration signals 

but could not identify segmental contributions to specific GRF features (i.e. only during a certain 

part of the stance phase). Since human running is the result of a complex combination of 

segmental movements, which simultaneously contribute to multiple specific GRF features, more 

complex analyses are probably required to provide further explanation of different GRF profiles 

and loading characteristics.  

Principal component analysis (PCA) has been used to reduce the amount of redundant 

information and extract key characteristics of highly-dimensional biomechanical data. For 

example, PCA has been used to analyse gait patterns (Daffertshofer et al., 2004; Federolf et al., 

2013a; Troje, 2002) and postural control (Federolf, 2016; Federolf et al., 2013b), differentiate 

between pathological groups (Deluzio et al., 1997; Federolf et al., 2013a; Wrigley et al., 2005), 

or quantify and evaluate sports technique (Boyer et al., 2014; Federolf et al., 2014; Gløersen et 

al., 2018). For such applications of PCA to waveform data, PCA has been shown to be able of 

identifying and describing three different modes of variation (Brandon et al., 2013; Wrigley et 

al., 2005); 1) magnitude variability, which explains differences in waveform amplitudes within 

a specific time window, 2) difference features, which describe variation in sign or direction, and 

3) phase shift characteristics, which describe changes in the relative timing of events within 



 

79 
 

waveforms. Therefore, PCA might be used to identify key elements of magnitude, variation and 

timing of segmental accelerations and describe their relative contribution to the GRF for 

different running tasks. 

A mass-spring-damper model approach (chapter 4) and a direct mechanical method (chapter 5) 

have shown that whole GRF waveforms can unlikely be predicted from segmental acceleration 

profiles, across different tasks. However, these methods could not distinguish between key 

segmental acceleration features and describe the relative contribution of these characteristics to 

the overall GRF profile. If specific features of the GRF are related to identifiable acceleration 

characteristics, this could provide further insight in the feasibility of using body-worn 

accelerometry to assess external whole-body loads experienced during running-based sports. 

Therefore, this study used PCA to identify key segmental contributions to GRF features that 

might be used to evaluate biomechanical loading. 

6.2 Methods 

6.2.1 Data 

Segmental CoM accelerations and GRF were collected for fifteen segments from fifteen team 

sports athletes (12 males and 3 females, age 23±4 yrs, height 178±9 cm, body mass 73±10 kg, 

sports participation 7.5±4.5 hrs per wk) who performed a variety of dynamic and high-intensity 

running tasks (accelerations, decelerations, 90° cuts and running at different constant speeds 

ranging from 2 m·s-1 to maximal sprinting). For the purpose of this study, only data for ground 

contacts of the right foot were included. Further details on the protocol, as well as data collection 

and processing are described in the methods section of chapter 5.  

6.2.2 Normalisation and scaling 

Processing of segmental acceleration data before performing the PCA was based on previously 

described applications of PCA for biomechanical data (Daffertshofer et al., 2004; Federolf, 

2016; Gløersen et al., 2018; Troje, 2002). Segmental CoM accelerations in the mediolateral (x), 

anteroposterior (y) and vertical (z) direction during ground contact, together with GRF curves, 

were normalised to 101 data points for each trial in Visual3D (v6.01.06, C-Motion, 
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Germantown, MD, USA) and exported to Matlab (version R2017b, The MathWorks, Inc., 

Natick, MA, USA). The three-dimensional segmental accelerations for all fifteen segments were 

expressed as acceleration vectors a for every time point t (equation 6.1) (note: vectors and 

matrices will be referred to by using bold lowercase or capital letters respectively). 

𝐚(t) =  [axଵ(t), ayଵ(t), azଵ(t), axଶ(t), … , azଵହ(t)] (6.1) 

The combination of acceleration vectors for each trial thus formed a 101·45 acceleration matrix 

Atrial. The trial-specific acceleration matrices were then combined in participant- and task-

specific matrices 𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤 by vertically stacking each trial matrix Atrial per participant and task. 

The combined accelerations matrices 𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤 were normalised and scaled to 1) assure that 

every participant equally contributed to the variance of the total acceleration matrix, 2) reduce 

the anthropometric differences between participants, 3) preserve the relative segmental 

acceleration amplitudes and 4) correctly represent the portion of the total body mass of each 

segment (Federolf, 2016). First for normalisation, a participant- and task-specific mean 

acceleration vector 𝐚𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤തതതതതതതതതതത was calculated and subtracted from each acceleration vector a 

(equation 6.2), to assure that the first principal component (PC) described the direction of 

maximum variance in the segmental acceleration data. 

𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤′(t) =  ቈ
൫axଵ(t) − axଵ

୮ୟ୰୲,୲ୟୱ୩തതതതതതതതതതതതതത൯, ൫ayଵ(t) − ayଵ
୮ୟ୰୲,୲ୟୱ୩തതതതതതതതതതതതതത൯, … ,

൫azଵହ(t) − azଵହ
୮ୟ୰୲,୲ୟୱ୩തതതതതതതതതതതതതതത൯

 (6.2) 

The normalised acceleration matrix 𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤′ thus represented the acceleration deviations from 

the participant’s mean segmental acceleration for each task. Secondly, the acceleration vectors 

for each participant were divided by the mean Euclidean norm euc୬୭୰୫
୮ୟ୰୲,୲ୟୱ୩തതതതതതതതതതതതതതതതതതതത of all 

acceleration vectors (equation 6.3), to ensure that participants equally contributed to the variance 

of the total acceleration matrix and minimise segmental acceleration amplitude differences due 

to anthropometric differences (Federolf et al., 2013b; Gløersen et al., 2018). 

𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤′′(t) =  
𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤′(t)

euc୬୭୰୫
୮ୟ୰୲,୲ୟୱ୩തതതതതതതതതതതതതതതതതതതത

 (6.3) 
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Thirdly, to further account for anthropometric differences between segments, each acceleration 

vector was normalised for the relative segmental masses. Acceleration vectors were multiplied 

by a weight vector w (equation 6.4), which contained the mass ratio of each segment relative to 

the total body mass (Dempster, 1955). 

𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤′′′(t) =  𝐰 ∙ 𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤′′(t) (6.4) 

Finally, the participant- and task-specific acceleration matrices for each participant 𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤′′′ 

were combined in one 48783∙45 (15 participants ∙ 6 tasks ∙ number of trials per task (483 in total) 

∙ 101 data points per trial) acceleration matrix A. 

6.2.3 Principal component analysis 

A principal component analysis (PCA) was performed in Matlab on the normalised and 

combined acceleration matrix A. The 45·45 covariance matrix of acceleration matrix A, the 

eigenvector matrix EV and eigenvalue matrix λ of the covariance matrix, and a time evolution 

coefficient matrix C were calculated. The eigenvector matrix EV consisted of 45 orthogonal 

eigenvectors evk, in which each vector k indicated the largest variance in segmental acceleration 

for all segments. The eigenvalue matrix λ contained the eigenvalues λk which quantified the 

amount of variability described by each eigenvector evk, with a strict decrease in the amount of 

variability with increasing k. The eigenvectors can also be referred to as the ‘principal 

component vectors’ or ‘principal acceleration vectors’. The time evolution coefficient matrix C 

(also referred to as the ‘score matrix’) was calculated by projecting each original normalised and 

scaled acceleration vectors a onto each PC k of the eigenvector matrix (Federolf, 2016; Moran 

et al., 2014), according to equation 6.5. 

𝐜𝐤(t) = 𝐚(t) ∙ 𝐞𝐯𝐤 (6.5) 

The score matrix C described how the original segmental acceleration data evolved along the 

new principal acceleration axes. Finally, participant- and task-specific principal acceleration 

(PA) matrices PApart,task were reconstructed for each individual PC k (single component 

reconstruction; equation 6.6) (Brandon et al., 2013; Ramsay and Silverman, 1997) to investigate 

how distinct features of segmental accelerations contribute to the specific GRF features, or the 
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sum of the first k PCs (equation 6.7) to examine the number of PCs required to adequately 

describe the whole GRF waveform. The PCs (i.e. eigenvectors) were expressed in the original 

segmental acceleration space by decomposing the reconstructed accelerations matrices into 

participant- and task-specific matrices, after which the normalisation and scaling steps were 

retraced.  

𝐏𝐀𝐤
𝐬𝐮𝐣𝐛,𝐭𝐚𝐬𝐤(t) = 𝐚𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤തതതതതതതതതതത + euc୬୭୰୫

୮ୟ୰୲,୲ୟୱ୩തതതതതതതതതതതതതതതതതതതത ∙ 𝐰ି𝟏 ∙ [𝐂𝐤 ∙ 𝐞𝐯𝐤]𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤 (6.6) 

𝐏𝐀𝟏ି𝐤
𝐬𝐮𝐣𝐛,𝐭𝐚𝐬𝐤(t) = 𝐚𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤തതതതതതതതതതത + euc୬୭୰୫

୮ୟ୰୲,୲ୟୱ୩തതതതതതതതതതതതതതതതതതതത ∙ 𝐰ି𝟏 ∙   𝐂𝐤 ∙ 𝐞𝐯𝐤

𝟏,𝟐,…,𝟒𝟓

𝐤ୀ𝟏



𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤

 (6.7) 

6.2.4 Principal accelerations and principal ground reaction forces 

Since the reconstructed PAs are consistent with the laws of Newtonian mechanics, the principal 

segmental acceleration vectors pa can be used to calculate principal GRF (PGRF) profiles. 

Resultant PGRF curves were calculated as the sum of the product of each segmental mass and 

principal CoM acceleration in the three directions, from each individual PC k (equation 6.8), or 

from the sum of PAs reconstructed from the first k PCs (equation 6.9). 

𝐏𝐆𝐑𝐅𝐤 = ඩ൭൫𝐩𝐚𝐤,𝐧,𝐱 ∙ m୬൯

ଵହ

୬ୀଵ

൱

ଶ

+ ൭൫𝐩𝐚𝐤,𝐧,𝐲 ∙ m୬൯

ଵହ

୬ୀଵ

൱

ଶ

+ ൭൫𝐩𝐚𝐤,𝐧,𝐳 ∙ m୬൯

ଵହ

୬ୀଵ

+ g ∙ BM൱

ଶ

 (6.8) 

𝐏𝐆𝐑𝐅𝟏ି𝐤 = 
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ଶ
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൱

ଶ

+ ൭൫𝐩𝐚𝐤,𝐧,𝐳 ∙ m୬൯
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୬ୀଵ

+ g ∙ BM൱
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⎥
⎥
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୮ୡୀଵ

 (6.9) 

In which k is the PC number, pa the principal segmental acceleration in x, y or z direction, m 

the segmental mass, n the number of segments (n=15) and g the gravitational acceleration (-9.81 

m·s-2). Measured and calculated PGRF curves were normalised to each participant’s body mass, 

while accuracy of the calculated PGRF profiles was evaluated as the curve RMSE relative to the 

measured GRF (see the methods sections in chapter 5 for more details). RMSE was rated as 

being very low (<1 N·kg-1), low (1-2 N·kg-1), moderate (2-3 N·kg-1), high (3-4 N·kg-1) or very 

high (>4 N·kg-1). 
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6.3 Results 

The normalised eigenvalues λk of the first fifteen PCs explained 95.8% of the variance in the 

segmental acceleration data across all tasks. However, visual screening revealed that principal 

segmental accelerations related to distinct GRF features were primarily explained by the first 

five PCs. The first five PAs (cumulative λ1-5=77.8%) were, therefore, used for further qualitative 

analysis. An example of the first five individual PGRFs profiles and how these were added as 

the summed PGRFs, is shown in figure 6.1. 

Table 6.1 Principal components and ground reaction forces for the different tasks 

  Principal components (k) 
 1 2 3 4 5 45 

λk (%) 48.57 12.43 8.56 4.44 3.78 0 
Cumulative λ (%) 48.57 60.99 69.55 73.99 77.77 100 

  PGRF RMSE (N·kg-1) 

Accelerations (n=80) 
4.46 5.37 5.09 4.93 3.88 2.89 
±1.3 ±1.5 ±1.5 ±1.5 ±1.2 ±0.7 

Decelerations (n=83) 
10.69 6.18 6.44 6.11 5.88 5.97 
±3.1 ±2.3 ±2.4 ±2.2 ±2 ±1.8 

90° Cuts (n=88) 
5.11 3.77 3.79 3.65 3.61 2.66 
±1.3 ±0.9 ±0.9 ±0.8 ±0.7 ±0.7 

Constant speed running       

     Low (2-3 m·s-1; n=81) 
2.53 1.89 1.93 1.92 1.87 1.65 
±0.5 ±0.4 ±0.5 ±0.5 ±0.5 ±0.4 

     Moderate (4-5 m·s-1; n=80) 
3.74 2.70 2.82 2.72 2.66 2.51 
±1.1 ±0.8 ±0.9 ±0.8 ±0.7 ±0.6 

     High (>6 m·s-1; n=71) 
5.67 4.14 5.03 4.71 4.84 4.34 
±2 ±1.2 ±1.2 ±1.2 ±1.1 ±1.3 

All tasks (n=483) 
5.38 4.01 4.17 4.00 3.78 3.33 
±3.1 ±2 ±2.1 ±1.9 ±1.8 ±1.8 

Summed principal ground reaction force (PGRF) error results from the first k 
principal components (PCs), as well as all 45 PCs (i.e. original data). Eigenvalues 
λk represent the normalised amount of segmental acceleration variance explained 
by each PC k. PGRF root mean square errors (RMSE) are mean ± standard 
deviation values for each task, per PC k. 

 

PC1 explained 48.6% of the segmental CoM accelerations of all segments in three directions. 

The PGRF1 following from the first PC, accounted for the majority of the overall GRF impulse 

for all the different tasks (figure 6.2; table 6.1). For decelerations and running at constant low, 

moderate and high speeds, most segments showed a similar segmental PA1 profile with the 
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majority of acceleration (and subsequent GRF) occurring between ~10-70% of stance (figure 

6.3 and 6.4). However, for acceleration trials, PC1 was related to a large overall GRF impulse 

later during stance (~30-90%). For 90° cuts and running at slower speeds, segmental PAs from 

PC1 generally had a lower magnitude, but showed a very similar and consistent acceleration 

profile throughout stance for all segments. The largest accelerations for PC1 were typically 

observed for the forearms and hands, although the PA1 profiles for these segments followed 

those of the other upper body segments.     

When the second PC was included, summed PGRF errors were reduced by 25.5% across tasks 

(table 6.1). PC2 primarily explained a distinct contribution of segmental accelerations to the 

impact peak (figure 6.2), for all tasks except accelerations. PAs of the right thigh, shank and foot 

(stance leg segments), together with the pelvis, were the dominant contributors to PGRF2. For 

accelerations, however, these segments predominantly contributed to a GRF peak between ~50-

90% of stance. 

Segmental accelerations from PC3 were associated with two distinct GRF features for running 

at constant speeds, but not for the other tasks. PGRF3 included a small amount of impact peak 

forces during the first ~20-30% of stance, while there was a general contribution of PGRF3 to 

the overall GRF impulse during the second half of stance (figure 6.2). The magnitude for both 

GRF features increased with running speed and were mainly related to the PA3 profiles of the 

support and swing leg segments, together with the arms (figure 6.4). 

Compared to the first three PCs, the fourth and fifth PC explained considerably less of the 

variance in the segmental CoM acceleration data (table 6.1), while contributions to the GRF 

were less distinct. For accelerations, these PCs included a constant (but relatively small) 

contribution to overall GRF from ~10-80% (PGRF4) and ~0-50% (PGRF5) of stance. For the 

other tasks, PC4 primarily included PAs that explained relatively small contributions to GRF 

during the first ~40% of stance. For running at high speeds, PGRF5 included a considerable 

contribution to overall GRF impulse, but not for the other tasks. Across tasks, GRF features in 

PC4 and PC5 were mainly associated with PAs of the upper body and swing leg. 
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Including higher PCs (i.e. k>5) steadily and consistently reduced the error between the summed 

PGRF and measured GRF profiles. These PCs contained relatively constant PAs of the arm and 

leg segments throughout the stance phase. The higher PAs primarily increased the overall 

magnitude of the summed PGRF, rather than influence specific GRF features. To achieve mean 

summed PGRF errors within 10% of the mean RMSE for GRF from all 45 PCs (i.e. the original 

data), a total of 18 (accelerations), 2 (decelerations), 15 (90° cuts), 7 (low-speed running), 4 

(moderate-speed running) and 18 (high-speed running) PCs were required respectively. 

Figure 6.1 Representative example of individual and summed ground reaction force (GRF) 

profiles reconstructed from the first five principal components (PCs), for a single participant 

running at a constant moderate speed. Individual principal GRFs (PGRFs; grey dotted lines) 

were added together as the summed PGRFs (∑PGRFs; grey solid lines) for the first k PCs and 

compared to the measured GRF (black solid line) by the curve root mean square error 

(RMSE). 
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Figure 6.2 Mean principal ground reaction forces (PGRFs) calculated from the first five principal components (PCs), for each task. PGRFs were calculated from principal 

accelerations (PAs) reconstructed from either the kth PC (top row), or the sum of the first k PCs (∑PGRF1-k; middle row). Root mean square errors (RMSE; bottom row) are 

mean errors for the ∑PGRF profiles and the horizontal black line represents the RMSE for ∑PGRFs from all 45 PCs (i.e. the original data). 
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Figure 6.3 Principal accelerations (PAs) from the first five principal components (rows) for 

accelerations (blue), decelerations (red) and 90° cuts (green). PA profiles are mean ± standard 

deviation (shaded) curves from 0-100% of stance, for all fifteen segments (columns). 
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 Figure 6.4 Principal accelerations (PAs) from the first five principal components (rows) for 

running at constant low (light grey), moderate (grey) and high speeds (black). PA profiles are 

mean ± standard deviation (shaded) curves from 0-100% of stance, for all fifteen segments 

(columns).  
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6.4 Discussion 

The aim of this study was to identify key elements of segmental accelerations and their 

contribution to specific resultant GRF features, using a PCA method. The three primary modes 

of variation described by PCA; a magnitude operator, a difference operator and a phase shift 

(Brandon et al., 2013; Wrigley et al., 2005), were evident in the first five PAs and PGRFs. First, 

segmental acceleration magnitude differences associated with the majority of the GRF impulse 

(i.e. overall loading of the body) and the impact peak were captured by the first and second PC 

respectively. Substantial variation in PA and PGRF profiles (i.e. amplitude variability of 

acceleration and force) between tasks showed that the magnitude of these GRF characteristics 

was strongly dependent on task (figure 6.2). Secondly, the third and fifth PC highlighted clear 

difference operator features. In acceleration trials for instance, PGRF3 and PGRF5 mainly 

contributed to the overall GRF for the first half of stance but explained a much lower amount of 

force during push-off, while for running at constant speeds this was the other way around. 

Thirdly, clear phase shift characteristics were also manifested in the first two PCs. The impulse 

peak in PGRF1 for example, appeared during the second half of stance for accelerations, but the 

first half of stance for the other tasks. Similarly, the high-frequency accelerations associated with 

the impact of landing appeared in the first ~20-30% of stance in the PA2 and PGRF2 profiles for 

decelerations, 90° cuts and running at all constant speeds, but much later for the acceleration 

trials. These results are consistent with previously described variability features (Brandon et al., 

2013; Deluzio et al., 1997; Wrigley et al., 2005), and show that PCA can identify important task-

specific GRF and associated segmental acceleration characteristics, as well as highlight the 

relative importance of these features in different running tasks. 

The second PC primarily contained acceleration and force features related to the impact peak of 

the resultant GRF profile, for all tasks except accelerations. The impact peaks in PGRF2 during 

the first ~20-30% of stance were mostly the result of high PA2 peaks of the foot, shank and thigh 

segment of the support leg, as well as the pelvis to a lesser extent (figure 6.3 and 6.4). This 

supports previous suggestions that the impact peak is predominantly associated with the 

accelerations of the stance leg segments (Bobbert et al., 1992, 1991; Clark et al., 2017; Shorten 



 

90 
 

and Mientjes, 2011). Moreover, it has been shown that despite the visual absence of impact 

peaks in the GRF waveforms for non-rearfoot running gaits (e.g. sprinting), force frequencies 

associated with these initial force peaks are still present (Gruber et al., 2017, 2015; Hamill and 

Gruber, 2017). Indeed, for running at high speeds, during which runners typically switched to a 

forefoot landing technique which caused a visual impact peak in the resultant GRF profiles to 

be absent, a clear impact force peak was observed in PGRF2 (figure 6.2). These findings thus 

support suggestions of the likely presence of an impact peak, despite their visual absence in the 

resultant GRF waveform. 

As described above, PC2 was mainly associated with the high-frequency impact accelerations 

and forces due to landing. For acceleration trials, however, PA2 profiles of the foot, shank and 

thigh segments of the support leg were mainly related to a force peak later during stance (figure 

6.2). This shows that in contrast to the other tasks, which typically include a high-frequency 

impact peak during the first ~20-30% of stance, acceleration movements contain a large support 

leg acceleration component later during stance, i.e. when pushing off. Furthermore, the smoother 

impacts of landing during acceleration activities were better explained by PC5 and, therefore, of 

less importance for the overall biomechanical load on the body in these trials. This phase shift 

feature highlights the importance of force production during the second half of stance for 

acceleration tasks, compared to the other tasks in which the braking aspect is emphasised more. 

Using a PCA approach to evaluate segmental acceleration data can thus not only identify 

important characteristics of the acceleration profiles, but also explain their contribution and 

relative importance to resultant GRF profiles for different running tasks. 

6.4.1 Implications for load monitoring purposes 

The results of the PCA approach described in this study highlighted different key magnitude, 

difference and phase shift characteristics of segmental accelerations, and their specific 

contributions to the overall GRF waveforms. However, these results have also emphasised that 

GRF and segmental acceleration features are highly task-specific, as described above. These 

findings could explain why individual models of any given number of segments, as considered 
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in chapter 5, could not lead to accurate estimates of whole GRF waveforms across different 

tasks. For example, a combination of specific segmental accelerations might be appropriate to 

estimate GRF profiles for sprinting well, while the same segments are not so suitable to describe 

the GRF for decelerations. This further supports the suggestion made in chapter 5, that it is 

unlikely that GRF waveforms can be estimated accurately from less than all fifteen segments, 

across different dynamic and high-intensity tasks frequently performed during running-based 

sports. Therefore, one should be very careful when using a generic biomechanical model or 

approach, to estimate and evaluate external biomechanical loads from segmental accelerations 

across several different tasks. 

Trunk accelerometry is a commonly (and arguably the most often) used acceleration signal for 

assessing biomechanical loads in different sports (Akenhead et al., 2017; Buchheit et al., 2015; 

Colby et al., 2014; Gaudino et al., 2013). Although the trunk has been suggested to be the main 

contributor to GRF (Bobbert et al., 1991; also see chapter 2 and 4), trunk PAs from PC1 (which 

described the majority of the overall resultant GRF impulse) showed very similar acceleration 

profiles compared to other segments, for all tasks (figure 6.3 and 6.4). Moreover, the higher PCs 

(i.e. k>1) did not explain any considerable additional trunk acceleration features. These findings 

further support the suggestion made in chapter 4, that the trunk’s large contributions to GRF are 

likely due to its large mass rather than high accelerations. The value of trunk acceleration signals 

for biomechanical load monitoring purposes is thus probably limited and one should be very 

cautious when using trunk accelerations alone to evaluate whole-body biomechanical loading. 

Across the different PCs and tasks, PAs for the arm segments (forearms and hands especially) 

typically had a high magnitude of acceleration (figure 6.3 and 6.4). This is likely the result of 

the relatively large amplitude of movement (and consequent acceleration) of these segments for 

each stride, compared to other segments. Nevertheless, the high PAs of the arm segments didn’t 

substantially affect any distinct features of the whole GRF profiles, which is likely due to their 

relatively low segmental mass. Errors for summed PGRFs did, however, gradually decrease 

when more PCs were included (figure 6.2), mainly due to arm segmental accelerations (but also 
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swing leg accelerations) explained by the higher PCs. Moreover, for decelerations and running 

at low to moderate speeds, mean errors for the summed PGRF profiles were slightly lower from 

the first five PCs relative to all 45 PCs, while considerably less PCs were required to achieve 

mean summed PGRF errors within 10% of the mean RMSE value from all 45 PCs. These results 

are likely caused by the more profound and complex arm movements during acceleration, 90° 

cutting and sprinting tasks. Therefore, although arm and swing leg motion are not the primary 

contributors to GRF, their segmental accelerations do account for a considerable part of the 

overall GRF impulse. These findings thus highlight the importance of considering all segments 

for evaluating overall whole-body loading in the field, especially for sports in which dynamic 

and high-intensity tasks are frequently performed.  

The reconstructed PAs described and interpreted in this study are no real acceleration signals, 

i.e. body segments do not really accelerate according to the individual PAs. Measuring these 

PAs, as well as qualitatively describing and visually interpreting the resulting PGRFs for load 

monitoring purposes, is thus impossible. Consequently, the present findings cannot directly be 

applied to estimate biomechanical loading (features) from segmental accelerations. Furthermore, 

each PA can represent a combination of multiple key acceleration characteristics. For example, 

PC2 emphasised the importance of the timing of high-frequency accelerations of the stance foot, 

shank and thigh segment for the GRF impact peak, but at the same time described considerable 

amplitude differences of these peaks between the different tasks. Although PCA can reduce the 

complexity and extract important characteristics of high-dimensional biomechanical data sets, 

individual PCs can thus still contain multiple key elements of the original data. This complexity 

of segmental contributions to GRF observed, further emphasises that estimating and assessing 

whole-body biomechanical loading from segmental accelerations is not straightforward. One 

should, therefore, be very cautious when interpreting segmental acceleration signals as a 

measure of biomechanical load, especially across different tasks.  
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6.4.2 Limitations  

For the purpose of this study, PCA was performed on a data set that deliberately combined 

segmental accelerations for multiple participants and tasks. The results of this study are thus a 

general representation of key segmental acceleration elements that explain GRF profiles (i.e. 

whole-body loading), across tasks typically performed during running-based sports. A limitation 

of this combined analysis is that unique loading features or requirements for individual athletes 

or tasks might not be highlighted. Moreover, the relative number of trials for each task could 

cause the overall PCA results to be dominated by task-specific features. However, although 

subtle differences could be highlighted by task-specific PCAs, the outcomes were highly 

comparable to the combined PCA described in this study (appendix J). Furthermore, the 

variation in the number of trials for the different tasks included (81±5 trials) was deemed 

sufficiently small to be an equal and appropriate representation of all tasks. Therefore, the 

combined PCA approach was considered appropriate for the purposes of this study. 

The use of resultant accelerations and GRFs could form a limitation for the interpretation of the 

PCA results. Direction specific segmental accelerations and related GRF features might not be 

identified by the resultant waveforms. However, the aim of this study was to evaluate overall 

biomechanical loading of the body and associated segmental accelerations. Moreover, since 

body-worn accelerometers cannot typically distinguish between global x-y-z directions, using 

resultant accelerations is thus more feasible for eventual translations of findings for 

biomechanical load estimation in the field. 

Before performing the PCA, segmental acceleration data for all participants were normalised by 

a weighting vector based on a standardised mass distribution (Dempster, 1955). Due to the 

anthropometric variability between the participants in this study (see the methods section), 

defining and applying an individualised mass distribution could improve the results. Although 

this was beyond the scope of the present study, future work should consider whether normalising 

data according to personalised mass distributions might be beneficial. 
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The methods described in this study used a classical PCA on a set of measured segmental 

acceleration signals. PCs resulting from this technique include a set of scores in the temporal 

domain that evaluate along the newly defined eigenvector axes (see section 6.2) but can be 

difficult to interpret biomechanically. Therefore, functional principal component analysis 

(fPCA), in which PCs are represented by functions in the original domain and thus allow for the 

direct interpretation of the fPCA outcomes, has been used (Ryan et al., 2006; Warmenhoven et 

al., 2017). In this study however, PCs were projected back from the temporal domain to the 

original segmental acceleration domain by reconstructing participant- and task-specific 

accelerations matrices which allowed for a clear biomechanical interpretation of each PC (i.e. 

PAs; see section 6.2.4). Furthermore, the segmental acceleration signal used in the PCAs 

typically contained high-frequency content. Fitting and smoothing basis functions (e.g. B-

splines, Fourier components, Gaussians) required for fPCA is likely to over-smooth acceleration 

signals and thus remove potentially important segment acceleration features. fPCA was therefore 

deemed inappropriate for the purposes of this study. 

6.5 Conclusion 

Since it is unlikely that whole GRF waveforms can be estimated from one or several segmental 

accelerations, this study aimed to identify key segmental accelerations associated with specific 

GRF features that might be used to assess whole-body biomechanical loads. However, the 

present findings show that segmental contributions to GRF, as well as the relative importance of 

these characteristics in different running activities, are highly complex and task-specific. 

Therefore, the value of using segmental accelerations, or even distinct components, to assess 

whole-body biomechanical loads across tasks frequently performed during running-based 

sports, is likely limited. 
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Chapter 7:  General discussion 

 

The aim of this discussion is to provide an interpretation of the outcomes of the different studies 

described in this thesis. First, the biomechanical and practical interpretations of the various 

results will be discussed, as well as the implications for current research and training load 

monitoring practice. Based on these interpretations and implications, several recommendations 

for researchers and practitioners will be made. Secondly, a critical reflection on the value of 

using ground reaction forces (GRFs) as a measure of external whole-body biomechanical load 

will be provided. The potential strengths, possible limitations and future challenges of GRF as a 

biomechanical load measure will be evaluated, and further informed by the findings of the 

different studies. Thirdly, several potential applications of segmental accelerations for 

biomechanical load monitoring purposes will be introduced. Different opportunities for the 

future use of current body-worn sensors, as well as other technologies, for evaluating 

biomechanical loads will be suggested. In addition, specific recommendations and suggestions 

for future research, as well as notions of caution when estimating and assessing biomechanical 

loads in the field, will be made throughout this general discussion chapter. Finally, based on the 

outcomes and conclusions following from the different studies, an overall conclusion of this 

thesis will be provided. 
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7.1 Introduction 

The overall aim of this thesis was to investigate whether ground reaction forces (GRFs) can be 

estimated from segmental accelerations, especially for dynamic and high-intensity running tasks 

that are frequently performed during running-based sports. The main findings were that: 

1) A two mass-spring-damper model can be used to accurately reproduce overall 

GRF profiles and impulses measured with a force platform for a range of high-

intensity running tasks, but this model could not be used to predict GRF from 

trunk accelerations measured with a trunk-mounted accelerometer. 

2) Using a direct mechanical approach, GRF profiles and loading characteristics can 

be estimated with reasonable accuracy across various dynamic and high-intensity 

running tasks from fifteen segmental accelerations measured with a motion 

capture system, but errors substantially increased when the number of segments 

was reduced. 

3) A principal component analysis can be used to identify key segmental contributions 

to specific GRF features for different dynamic and high-intensity running activities, 

but these characteristics and their relative importance were highly complex and task-

specific. 

These outcomes have important implications for current research and training load monitoring 

practice. Moreover, the findings in this thesis provide valuable insight into previous research 

findings, can be used to inform future work that aims to use GRF as a measure of whole-body 

biomechanical load, and demonstrate some possible applications for current body-worn sensors, 

as well as potential opportunities for future technologies. Therefore, the aim of this general 

discussion is to discuss the various implications, applications and opportunities following from 

the studies described in this thesis.  

7.2 Implications for biomechanical load monitoring practice 

In the introduction of this thesis, biomechanical load monitoring was described as a multi-

layered sphere of which researchers and practitioners should aim to reach the core (chapter 1). 
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The outcomes of the different studies have important implications for current research and 

training load monitoring practice and can further inform this biomechanical load sphere concept. 

This section will discuss the implications of the different findings for researchers and 

practitioners, as well as identify their position within the biomechanical load sphere (figure 7.1). 

7.2.1 The two mass-spring-damper model approach 

Chapter 3 has shown that the two mass-spring-damper can be used to accurately reproduce 

overall GRF profiles for high-intensity running tasks. This study was the first attempt to use a 

two mass-spring-damper model to replicate and predict GRF for tasks other than steady running 

at slow or moderate speeds. Although the model’s ability to accurately model a variety of GRF 

curves did not lead to eventually predicting GRF from trunk accelerations (chapter 4), the 

modelled GRFs could potentially be used to investigate how human locomotion, as well as 

physical and anatomical characteristics, relate to GRF during tasks other than steady running. 

Previous studies have for instance used the two mass-spring-damper model, as well as 

comparable models, to investigate various kinematic, kinetic or external variables (see chapter 

2.4 for a detailed overview of several applications of mass-spring(-damper) models). For such 

analyses to be biomechanically relevant, model parameters are required to remain constant 

between similar tasks and/or trials and vary only within a physically meaningful range of 

parameter values. However, the results of chapter 3 have shown that the required model 

parameters to reproduce measured GRF strongly varied between trials of the same task and had 

minimal physical meaning. Researchers should, therefore, be very careful when using the two 

mass-spring-damper model (and other similar models) to investigate locomotion during high-

intensity running, as these models are possibly unable to truthfully describe the biomechanical 

aspects of such tasks. 
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Figure 7.1 The multi-layered biomechanical load sphere. While the two mass-spring-damper 

model (2MSD) studies were located towards the surface of the sphere, ground reaction forces 

estimated from multiple segments demonstrated the potential for moving towards the core of 

the sphere. The complexity revealed by the principal component analysis (PCA) highlights the 

difficulty of moving towards the core. 

Chapter 3 has shown that reproducing GRF with a two mass-spring-damper model is valid and 

reliable, but this approach is purely lab based and its biomechanical meaning is thus possibly 

limited. This study can, therefore, be located on the surface of the biomechanical load sphere 

(figure 7.1). To move closer towards a field application of the two mass-spring-damper model, 

chapter 4 investigated if this model could be driven by commonly used trunk accelerations to 

predict GRF. However, the findings of this study showed that this method could not lead to valid 

and/or reliable GRF predictions. Therefore, despite the big leap towards a field-based measure 

of biomechanical loading, chapter 4 should still be located on the surface of the sphere (although 

in a different location) (figure 7.1).  

7.2.2 Trunk accelerations to assess biomechanical loading? 

Commonly applied and popular methods to assess the biomechanical loads athletes are exposed 

to, rely heavily on accelerometry derived training load measures. These metrics such as 

PlayerLoad (Barrett et al., 2014; Boyd et al., 2011; Scott et al., 2013), (New) Body Load 
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(Ehrmann et al., 2016; Lovell et al., 2013; McLean et al., 2018; Weaving et al., 2014), Force 

Load (Colby et al., 2014) and Dynamic Stress Load (Gaudino et al., 2015) are typically based 

on a single (trunk) acceleration signal and characterise a general ‘shaking up’ of the body. 

However, a biomechanical underpinning that relates these measures to established parameters 

of biomechanical load is still lacking. In fact, the ability of PlayerLoad (which is arguably the 

most widely used accelerometry-based load metric) to distinguish between different activities 

has been shown to be poor, suggesting PlayerLoad to be more related to the overall workload 

(e.g. total distance covered, duration) rather than biomechanical loads experienced (Green, 

2018). Moreover, it has been shown that cumulative PlayerLoad can vary between 

accelerometers worn on the trunk or the pelvis (Barrett et al., 2014), while the accumulation of 

Body Load (a similar metric) has been shown to be strongly dependent on accelerometer fitting 

in either a vest or a jersey (McLean et al., 2018). Furthermore, the validity of absolute 

acceleration magnitudes from commercial accelerometer units has been found to be poor and 

device dependent (Kelly et al., 2015; Nicolella et al., 2018), and even depends on operating 

range (Mitschke et al., 2018). These findings make the construct validity of accelerometry 

derived load measures to assess the external biomechanical loading of the body questionable.  

In line with the above described findings, the results in chapter 4 have shown that trunk 

accelerometry could not be used to drive a two mass-spring-damper model to predict GRF. 

Moreover, chapter 5 has shown that accelerations of most body segments are required to achieve 

meaningful GRF estimates using a direct mechanical approach, while chapter 6 has shown that 

trunk accelerations were predominantly described by a single principal component and are not 

related to any specific GRF features. These findings show that it is not straightforward to 

associate accelerations of the trunk or other individual segments to GRF, thus making it unlikely 

that acceleration signals from individual segments provide an accurate measure of whole-body 

biomechanical loading. Despite their field-based nature, these measures are thus located towards 

the surface of the biomechanical load sphere (figure 7.1). Given the importance of a full 

understanding of load measures before embedding them into monitoring programs (Burgess, 

2017), these outcomes have important implications for current training load monitoring practices 
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using trunk accelerometers. More specifically, researchers and practitioners should exercise 

caution when interpreting acceleration signals and accelerometry derived load metrics from a 

single unit as measures of whole-body biomechanical load.  

Chapter 5 introduced a direct mechanical approach to estimate GRF and has shown that GRF 

can be estimated from multiple segmental accelerations with reasonable accuracy. Although this 

study was laboratory based, these findings highlighted the potential of this approach for moving 

biomechanical load monitoring practice towards the centre of the sphere. Providing valid and 

reliable measures of multiple segmental accelerations can be obtained in the field (see section 

7.4 for a more detailed discussion on this), this approach could offer a way towards a more field-

based measure of biomechanical load. Scoring well for accuracy and biomechanical meaning, 

chapter 5 can thus be located slightly further to the centre of the sphere (figure 7.1). However, 

chapter 6 has revealed the complex variety of segmental contributions to GRF within and 

between different running tasks. This complexity highlights that biomechanical load monitoring 

is not straightforward and can thus be seen as a tough layer in the multi-layered sphere, 

explaining the difficulty experienced when moving closer towards the core (figure 7.1). These 

conclusions further emphasise the highly complex nature of biomechanical load monitoring in 

the field and support the recommendations for caution made above. 

7.3 The value of ground reaction force as a biomechanical load measure 

An important assumption made in this thesis and rationale for investigating if GRF can be 

estimated from segmental accelerations is that GRF is a meaningful measure of biomechanical 

load. Following on from the initial interpretations provided above it is useful to critically reflect 

on this assumption, to put these findings, as well as suggestions for future research, in a broader 

perspective. Therefore, this section will (informed by the outcomes of the previous chapters) 

discuss the value of GRF for biomechanical load monitoring in running-based sports, the 

required accuracy of GRF estimates, how GRF relates to other measures of biomechanical 

loading. 
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7.3.1 Ground reaction forces in running-based sports 

Since the impacts of landing during running (i.e. GRF) are absorbed and returned by the different 

hard- and soft-tissues of the body, GRF is believed to be related to performance determining 

factors, as well as injuries (see chapter 2.3 for more a more detailed explanation). For example, 

several studies have shown that GRF components can be used to evaluate and improve sprint 

performance in different athlete populations (Bezodis et al., 2017; Hunter et al., 2005; Nagahara 

et al., 2017; Rabita et al., 2015). Likewise, musculoskeletal overuse injuries have been suggested 

to be related to several specific characteristics of the GRF such as the impact peak and the 

loading rate (e.g. Hreljac, 2004; Hreljac et al., 2000; Milner et al., 2006), which might be directly 

affected by fatigue (Bazuelo-Ruiz et al., 2018; Christina et al., 2001; Degache et al., 2016; 

Lazzer et al., 2015; Morin et al., 2011). However, other studies have found different results and 

suggested that vertical GRF profiles might not differ for athletes with lower-limb stress fractures 

(Zadpoor and Nikooyan, 2011a), while impact peaks may not significantly contribute to running 

injuries (Nigg et al., 2015; van der Worp et al., 2016). Peak vertical GRF and loading rates have 

even been found to be higher in uninjured runners compared to injured runners (Duffey et al., 

2000; Messier et al., 2018). In addition, fatigue related changes in GRF have been suggested to 

be ambiguously small (Bazuelo-Ruiz et al., 2018; Nikooyan and Zadpoor, 2012; Paquette and 

Melcher, 2017), while injury and/or performance related aspects of the GRF are likely to be age- 

(Paquette et al., 2018) and sex-specific (Bazuelo-Ruiz et al., 2018; Bredeweg et al., 2013; 

Messier et al., 2018; Milner et al., 2006; Napier et al., 2018). These contrasting findings indicate 

that using GRF for performance optimisation or injury prevention purposes is not 

straightforward and performance- or injury-related differences might be very subtle and 

individual-specific. Therefore, the question can be asked how accurate GRF measurements need 

to be, to be used as a valid and reliable tool for training load monitoring, as well as if there are 

other, more appropriate measures of biomechanical load to evaluate injury risk and performance. 

7.3.2 How good is good enough?  

Potential injury-related changes in GRF within, and differences between populations have been 

shown to be small and indefinite. Meaningful performance- or injury-related differences in GRF 
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loading characteristics can even be as small as ~3-10% (Bazuelo-Ruiz et al., 2018; Bezodis et 

al., 2017). It may thus be critical to achieve highly accurate estimates of GRF for valid, reliable 

and meaningful external biomechanical load monitoring. Therefore, the varying accuracy of 

estimated GRF characteristics (errors of ~2-40%) from fifteen segmental accelerations found in 

chapter 5 (i.e. the most accurate GRF estimates in this thesis) might already rule out the 

usefulness of this approach for certain biomechanical load monitoring purposes. However, 

although errors of estimated impact peaks and loading rates typically ranged between ~13-29% 

across the different tasks, estimated impulse errors were only ~7%. Since this overall loading 

magnitude (i.e. impulse), rather than vertical loading rates, has been suggested to be the primary 

cause of mechanical fatigue of bone (Loundagin et al., 2018), monitoring the accumulation of 

overall GRF impulse might be used to assess potential cumulative overloading and investigate 

injury mechanisms. Impulses of the accuracy found in chapter 5 could thus still be used a 

valuable tool for quantifying and evaluating the overall external biomechanical load on the body. 

Moreover, all estimated GRF errors observed in chapter 5 are solely the result of measurement 

and methodological inaccuracies (e.g. marker placement inaccuracies, soft-tissue artefacts, 

assumed standardised segmental properties). Future research could, therefore, examine if 

dynamically consistent models (e.g. by using residual reduction algorithms; (Delp et al., 2007; 

Faber et al., 2018)) or new technologies (e.g. implantable accelerometers or markerless motion 

capture; see section 7.4) could overcome these limitations and reduce measurement errors. If so, 

the accuracy of GRF estimates might be improved and allow for other loading characteristics 

(e.g. impact peak, loading rate) to be used. Therefore, although further research is required to 

improve GRF estimates, the mechanical approach described in chapter 5 can form a valuable 

tool for biomechanical load monitoring in the field and open the door for a more detailed 

understanding of the external loading of the body during different tasks. 

The aim of this thesis was to estimate GRF to ultimately evaluate the overall external 

biomechanical loading of the body from body-worn accelerometers in the field. However, most 

accelerometers cannot typically distinguish between a global mediolateral, anteroposterior and 

vertical orientation and hence, using resultant segmental accelerations is more feasible for 
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practical reasons. Therefore, the different studies described have all aimed to estimate and use 

resultant segmental accelerations and GRF, rather than their three individual components. 

Although resultant forces are a measure of the total external load, however, their use can be a 

limitation for load monitoring purposes. For example, resultant GRF does not allow to 

distinguish between the different force components, which could be important to assess the risk 

for specific injuries (Gottschall and Kram, 2005; Zadpoor and Nikooyan, 2011b) or evaluate 

performance (Bezodis et al., 2017; Kugler and Janshen, 2010). Although the investigation of 

separate acceleration and force components was beyond the scope of this thesis, measuring and 

assessing individual acceleration and GRF components may provide a more complete picture of 

the relationships between external load and e.g. specific injuries. Therefore, future research 

should investigate how separate segmental acceleration and GRF directions are related for 

different tasks. 

7.3.3 External vs internal biomechanical loads 

How GRF is related to injury is still not well understood, as described above. However, overuse 

injuries can be defined as structural failure when the continuous and repetitive stresses exceed 

the structure-specific load capacity (Bertelsen et al., 2017; Edwards, 2018). Since GRF is known 

to not always be an appropriate reflection of these internal stresses working on the different body 

structures, the value of GRF (or GRF loading characteristics) as a measure of biomechanical 

loading in relation to injuries could be questioned. For example, forces experienced by the ankle 

joint and lower leg during running (~10-14 times body weight) have been shown to be primarily 

due to self-inflicted muscle contractions rather than the forces resulting from collisions with the 

ground (~2-3 times body weight) (Scott and Winter, 1990). Measuring and evaluating forces 

acting on internal structural tissues (e.g. a specific joint, muscle, tendon, bone loads etc.) might, 

therefore, provide more meaningful and valuable information for biomechanical training load 

monitoring than GRF. On the other hand, GRF indirectly drives and contributes to internal 

stresses on the different hard- and soft-tissues of the body, as described in chapter 2.3, and may 

thus be used to partially describe these internal loads. Furthermore, in combination with 

kinematic measurements in the field (e.g. from accelerometry suits or markerless motion capture 
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systems as described in chapter 7.3), GRF could be used to determine and evaluate the internal 

structure-specific loads in more detail. Although GRF measurements might thus have limitations 

in its ability to directly assess injury-risk and should be evaluated and interpreted carefully 

alongside other available information, monitoring GRF in the field would be an important first 

step towards investigating internal biomechanical stresses in more detail. 

The different studies described in this thesis have focused on using segmental accelerations to 

estimate GRF. An important rationale for this was to ultimately use currently popular body-worn 

accelerometers to more accurately assess external whole-body biomechanical loading. However, 

internal structure-specific loading might provide more valuable information regarding specific 

injuries, as described above. Despite available methods to calculate these internal loads such as 

joint and muscle forces (Damsgaard et al., 2006; Delp et al., 2007; Seth et al., 2018), detailed 

kinetic and kinematic input not typically available in the field are required. Therefore, if body-

worn accelerometers could be used to directly assess biomechanical loading at an organ level, 

this would overcome the need for other biomechanical measurements. However, evidence 

relating individual segmental accelerations to internal biomechanical forces is yet lacking. For 

example, despite suggestions that tibial accelerations are related to stress and strain experienced 

by the tibia, this has not been proven (Sheerin et al., 2019). Therefore, besides using 

accelerometry to estimate and assess GRF as a measure of whole-body biomechanical load, 

future research should also aim to identify meaningful structure-specific loads and investigate if 

these internal biomechanical loads can be accurately estimated from body-worn accelerometry. 

7.3.4 Cumulative biomechanical loading 

As discussed above, the value of GRF profiles or specific loading characteristics in relation to 

injuries is still unclear. This ambiguity further emphasises that meaningful biomechanical load 

monitoring (and training load monitoring in general) in running-based sport is not 

straightforward. However, the majority of studies investigating GRF related load parameters in 

relation to injury use relatively small sample sizes of ~20-60 participants (van der Worp et al., 

2015; Zadpoor and Nikooyan, 2011a), who typically perform a limited number of trials in an 
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unnatural laboratory environment. Moreover, these lab-based studies only examine GRF profiles 

at a specific point in time and do not typically account for the temporal nature of injury-risk 

factors (Verhagen et al., 2018), or the cumulative nature of injuries (Bertelsen et al., 2017; 

Edwards, 2018). For example, it has been shown that isolated tibial and femoral bone samples 

can withstand ~12,000-16,500 cycles of a typical running GRF profile before failure (Loundagin 

et al., 2018), which highlights the importance of monitoring the accumulation of biomechanical 

loads over time. The mentioned limitations of previous lab-based studies might thus partly 

explain the current lack of solid evidence for a relation between GRF (loading characteristics) 

and injuries. However, GRF measurements without the need for force platforms could provide 

a large amount of GRF data for consecutive ground contacts and enable biomechanical studies 

to be performed on a bigger scale than currently usual (i.e. more participant and ground contacts 

collected over time in natural training and/or competition environments). Such a substantial 

increase in available GRF information could allow for identifying general trends of injury-

related GRF characteristics, as well as investigating the effects of the accumulation of external 

forces working on the body. Future research should, however, investigate if GRF measured on 

a large scale can be used to identify potential injury mechanisms and/or risk factors. 

Nevertheless, assessing the value of GRF as a biomechanical training load measure should not 

solely be based on laboratory studies relating individual GRF features to running related 

(overuse) injuries, but also consider the accumulation of these loads (which are typically poorly 

quantified in lab-based studies) as a major cause for such injuries. 

7.4 Future applications and technologies 

Although several outcomes of this thesis have highlighted that care should be taken when using 

accelerometry data, this thesis has also demonstrated some potential applications of segmental 

accelerations. Therefore, this section will discuss several opportunities for the use of current 

body-worn accelerometers, future implantable sensors, markerless motion capture technologies 

or machine learning techniques for biomechanical load monitoring purposes. These techniques 

might ultimately open the door to GRF measurements that are field based and thus closer to the 

core of the biomechanical load sphere.  
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7.4.1 Body-worn accelerometers 

Chapter 5 has demonstrated different potential applications of currently popular body-worn 

accelerometers. This chapter demonstrated that GRF profiles and loading characteristics for 

different high-intensity and dynamic running tasks can be estimated reasonably well from fifteen 

segmental accelerations, measured from a laboratory-based motion capture system. If 

accelerometers could provide full-body segmental accelerations, this direct mechanical 

approach might open the door for estimating GRF in applied sport settings (e.g. running tracks, 

football pitches, tennis courts). Full-body wireless accelerometry suits have already been shown 

to be a reliable and valid method to simultaneously measure kinematic information of all body 

segments for motion capture purposes outside the laboratory (e.g. Xsens MVN (Roetenberg et 

al., 2013)), and have even been used to estimate GRF and moments during walking (Karatsidis 

et al., 2017). Although these systems allow the measurement and analysis of movement in 

virtually any environment, their application to predict GRF or other biomechanical load 

variables in sport settings has not been investigated yet. The direct mechanical approach 

described in chapter 5 could thus provide a simple method to estimate GRF using existing full-

body accelerometry technologies. Moreover, accurate GRF estimation in combination with the 

already available kinematic measures could allow for further information on several internal 

biomechanical stresses, such as muscle forces and joint moments. Therefore, future research is 

recommended on whether these existing accelerometry systems can be used to estimate and 

monitor GRF in the field. 

Although full-body accelerometry techniques have the potential to estimate GRF as described 

above, it is questionable whether such systems can be used to monitor loads of training and/or 

competition on a daily basis. Since the use of full-body suits is often invasive and time 

consuming, accelerometry suits are unlikely to be a feasible means for day-to-day biomechanical 

load monitoring. In team sports especially, where a relatively large number of athletes typically 

train multiple times a day, these practical issues might form a serious limitation. Moreover, 

accelerometry suits can highly compromise comfort and restrict movement during sports, which 

can considerably affect an athlete’s performance or induce injury related biomechanics. Using 
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accelerometers that are implemented into other body-worn devices or items is, therefore, 

desirable to enhance usability. Examples include accelerometers embedded in watches (Adams 

et al., 2016), eyeglasses (Amft, 2017), trunk-mounted GPS devices (Boyd et al., 2011) and even 

garments (Amft, 2017; Düking et al., 2016). However, it is unlikely that such units can 

simultaneously provide accelerations of all body segments, while the measured acceleration 

signals probably deviate from the actual segmental CoM accelerations, as shown in appendix I. 

It is, therefore, unlikely that a few of these integrated body-worn accelerometers can be used to 

accurately measure and monitor subtle GRF loading characteristics such as impact peaks and 

loading rates, across a range of different running tasks. Nevertheless, the results in chapter 5 

have also shown that GRF impulses, which are the overall whole-body loads experienced by the 

body, could be estimated with low to moderate errors across various dynamic and high-intensity 

tasks. Moreover, impulse errors were relatively robust against the reduction of segments. 

Although further work on this is required, impulses may thus have the potential to be measured 

from a limited number of body-worn accelerometers and could potentially be used to monitor 

the general cumulative quantity of whole-body loading experienced during training and/or 

competition. 

7.4.2 Implantable sensors 

The overall aim and methods throughout this thesis have primarily assumed the use of current, 

externally worn inertial sensors to eventually predict GRF. Although body-worn devices are 

currently a popular means to quantify and assess training loads and health status (Thompson, 

2018, 2017, 2016, 2015), the reliability and validity of wearables for use in various sport and 

fitness contexts has also been questioned (Düking et al., 2016; Peake et al., 2018; Sperlich and 

Holmberg, 2016). Moreover, it has been suggested that technological developments might in the 

future replace wearable sensors by other techniques such as implantable units (Catherwood et 

al., 2015; Sperlich et al., 2017). Implantable accelerometers for example, have already been used 

to provide accurate continuous diagnostic information such as blood pressure (Theodor et al., 

2014) and heart rate (variability) (Hawkins et al., 2016; Perego et al., 2008), and have for 

instance been applied successfully to predict and prevent heart failure (Hawkins et al., 2016; 
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Perego et al., 2008). In a sport and training load monitoring context, implantable accelerometers 

could overcome several issues of the current externally worn units. Implantables are virtually 

unnoticeable, minimise movement relative to the segment it is implanted in and can be placed 

close to a segment’s CoM. These advantages might allow for more precise measurements of 

multiple (full-body) segmental CoM accelerations, and as a result, open the door for more 

accurate predictions of GRF from segmental accelerations, e.g. following the approach described 

in chapter 5. On the other hand, initial placement of implantable devices is currently invasive 

and might raise a number of ethical problems (Catherwood et al., 2015; Sperlich et al., 2017). 

Depending on unit location, placement requires minor or major surgery, limiting e.g. user-

friendly hard- and software updates or replacement. Moreover, implanted devices could raise 

concerns around ethical issues such as an athlete’s long-term health risks (Catherwood et al., 

2015) or data accessibility and ownership (Sperlich et al., 2017). Therefore, although it is not 

unthinkable that implantables can be applied for training load monitoring purposes in the future, 

several hurdles need to be overcome for implantable devices to become as widely used as the 

current generation of wearables. 

7.4.3 Markerless motion capture 

Despite the relatively easy in-field use of wearable (or implantable) sensors, these methods also 

have some serious limitations. Individual body-worn devices or full-body suits are often invasive 

in one way or another and can considerably affect an athlete’s movement during sports. 

Therefore, if other methods to measure segmental accelerations besides body-worn 

accelerometers would become available in the future, this could increase the usability for GRF 

estimations. Markerless motion capture for example, has been suggested to be a potential future 

method for non-invasively measuring different biomechanical variables in the field (Alderson, 

2015; Corazza et al., 2006). Examples of markerless motion capture applications include the 

analysis of tennis serves (Abrams et al., 2014), tracking golf swing motion (Fung et al., 2014), 

the assessment of BMX starts (Grigg et al., 2018), measurements of flight time and height during 

vertical jumps (Balsalobre-Fernández et al., 2014), and kinematic assessments of walking and 

running (Padulo et al., 2015), and squatting (Perrott et al., 2017; Saylor et al., 2017). Similarly, 
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markerless measurements of whole-body movements in different sport settings (e.g. running 

tracks, football pitches, tennis courts) might be used to measure segmental accelerations and 

estimate GRF according to the methods described in chapter 5. Moreover, similar to the above 

described full-body accelerometry suits, markerless motion capture systems can provide readily 

available kinematic information which, in combination with GRF, allows for further 

investigation of biomechanical loads on the internal structures. Therefore, if markerless motion 

capture technologies become available which can provide valid and reliable real-time measures 

of segmental displacements and accelerations in the field, this might eventually be used to 

substantially enhance biomechanical load monitoring of training and/or competition in different 

sports. 

7.4.4 Machine learning  

An important finding of the studies described in this thesis was that GRF cannot be predicted 

from one or multiple segmental accelerations, following different mechanical approaches. 

However, other methods, such as machine learning, have emerged in medical sciences and also 

gained popularity in human movement biomechanics (Halilaj et al., 2018). More specifically, 

several studies have aimed to use machine learning methods to predict GRF from commonly 

used types of kinematic data. For example, based on the GRF and accelerometry data described 

in chapter 3 and 4, Pogson et al. (2018) used a neural network method to predict GRF from a 

trunk-accelerometer and found very strong correlations (R2 > 0.9) between measured and 

predicted GRF curves, across a variety of different high-intensity running tasks (Pogson et al., 

n.d.). Similarly, machine learning has successfully been used to predict GRF from one or 

multiple body-worn accelerometers in walking (Guo et al., 2017; Karatsidis et al., 2017) and 

steady running (Wouda et al., 2018). In addition, other studies using neural networks models 

have accurately predicted GRF and moments, as well as joint forces and moments, from marker 

trajectory data for walking and sidestepping (Johnson et al., 2018b, 2018a; Oh et al., 2013). 

Although these studies have reported promising results, there are also disadvantages of using 

computational approaches to estimate GRF for load monitoring purposes. For example, 

underlying physical mechanisms of the predicted variable (e.g. GRF, joint moments) are often 
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difficult to explore (Halilaj et al., 2018). Therefore, despite ongoing research into the 

interpretability of machine learning (Doshi-Velez and Kim, 2017), these methods may still be 

limited in their application for e.g. explaining injury mechanisms or performance enhancing 

criteria. Machine learning could thus offer a powerful and simple alternative for mechanical 

approaches to predict GRF in non-laboratory settings, providing that no further exploration of 

underlying physical mechanisms is required. 
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Chapter 8:  Conclusion 
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This thesis has aimed to estimate GRF from segmental accelerations to ultimately provide 

researchers and practitioners with a biomechanically sound and meaningful measure of external 

whole-body biomechanical loading. The outcomes of the different studies have shown that it is 

not straightforward to predict GRF from accelerometers embedded in current trunk-worn GPS 

devices, or even multiple segmental accelerations measured with a three-dimensional motion 

capture system. Moreover, the key segmental contributions to specific GRF features were highly 

complex and specific to different tasks frequently performed during running-based sports. 

Together, these findings show that accurately estimating a well-established measure of whole-

body biomechanical load from segmental accelerations is difficult, especially across a range of 

tasks that are frequently performed during running-based sports. Consequently, the construct 

validity of using single accelerometer units and accelerometry derived load measures to assess 

the external biomechanical loads in the field, is likely to be poor. Researcher and practitioners 

should, therefore, be very cautious when using these methods to measure, monitor and evaluate 

external whole-body biomechanical loads.  
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Appendix A:  The two mass-spring-damper model 

 
This appendix aims to describe the two mass-spring-damper model (chapter 3 and 4) and explain 

how the eight natural model parameters of this model were derived. The model consists of a 

lower mass on a spring and damper, representing the support leg, with an upper mass on a spring 

on top, representing the rest of the body (figure A.1). The positions of the upper (m1) and lower 

mass (m2) without any external load are described by x1 and x2, while l1 and l2 are the natural 

lengths of the upper and lower springs respectively. The linear spring stiffness constants for the 

upper and lower spring are defined by k1 and k2, while c is the damper’s damping coefficient.  

Figure A.1 The two mass-spring-damper model. 

From these nine model parameters the eight natural model parameters were derived according 

to equations A.1.1-8. These eight natural model parameters were then used to describe the 

accelerations of the upper (a1) and lower mass (a2) according to equations A.1.9-10, in which g 

is the gravitational acceleration (-9.81 m∙s-2) and BM the total body mass. Finally, the modelled 

ground reaction force (GRF) was calculated according to equation A.1.11. 
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Table A.1 Equations describing the eight natural parameters of the two mass-spring-damper 
model 

Initial position of the upper mass 
pଵ =  xଵ – lଵ – lଶ 

 
Eq. A.1.1 

Initial position of the lower mass 
pଶ =  xଶ – lଶ 

 
Eq. A.1.2 

Initial velocity of the upper mass 
vଵ = pଵ̇ 

 
Eq. A.1.3 

Initial velocity of the lower mass 
vଶ  =  pଶ̇ 

 
Eq. A.1.4 

Mass ratio 
λ =

mଵ

mଶ
 

 
Eq. A.1.5 

Natural frequency of the upper 
spring 

ωଵ = ඨ
kଵ

mଵ
= ඨ

(1 + λ) ∙ kଵ

λ ∙ BM
 

 

Eq. A.1.6 

Natural frequency of the lower 
spring 

ωଶ = ඨ
kଶ

mଶ
= ඨ

(1 + λ) ∙ kଶ

BM
 

 

Eq. A.1.7 

Damping ratio of the damper 
ζ =

c

2 ∙ ඥkଶ ∙ mଶ

 

 
Eq. A.1.8 

Acceleration of the upper mass aଵ = −ωଵ
ଶ ∙ (pଵ − pଶ) + g Eq. A.1.9 

Acceleration of the lower mass 
aଶ = −ωଶ

ଶ ∙ pଶ + ωଵ
ଶ ∙ λ ∙ (pଵ − pଶ) − 

2 ∙ ζ ∙ ωଶ ∙ vଶ + g 
Eq. A.1.10 

Ground reaction force GRF = −
BM ∙ ωଶ

1 + λ
∙ (ωଶ ∙ pଶ + 2 ∙ ζ ∙ vଶ) Eq. A.1.11 
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Appendix B:  Comparing solving methods: gradient descent 

vs. numerical optimisation 

 

B.1 Objective 

Solving procedures for finding the two mass-spring damper model parameters (appendix A) 

required to accurately model ground reaction force (GRF) profiles can lead to multiple local 

optimal solutions in the eight-parameter search windows. Therefore, the aim of this appendix 

was to determine the best method to solve the model’s equations and reproduce measured GRF 

profiles most accurately. Parameter optimisations were performed by using two distinct 

methods; 1) a gradient descent optimisation routine (Nedergaard, 2017; Nedergaard et al., 2018) 

and 2) a numerical optimisation method.  

B.2 Methods 

Measured GRF profiles were reproduced with a two mass-spring-damper (see the methods 

section in chapter 3 for more details). A gradient descent optimisation routine was performed 

using a purpose written Matlab code (version R2015a, The MathWorks, Inc., Natick, MA, USA) 

(Nedergaard, 2017). The two 2nd order differential equations for the upper and lower mass 

accelerations a1 and a2 (appendix A) were transformed to four 1st order differential equations. 

This new set of equations was then solved with a 4th order Runge Kutta method and the resulting 

parameters were used to calculate the modelled GRF according to equation A1.11. For each trial, 

a unique optimal set of the eight model parameters was defined based on the lowest value of the 

RMSE between the measured and modelled GRF curves. 

For the numerical method, a purpose written Python code (Python, 2017) based on a numerical 

optimisation library (SciPy, 2017) was used. For this method, the gradient of the GRF profiles 

was included as an extra error metric besides RMSE. The best combination of model parameters 

was selected based on the combination of the lowest RMSE and gradient error between the 

modelled and measured GRF curves during ground contact. Multiple different in-built Python 

solvers (BFGS, CG, COBYLA, L-BFGS-B, Nelder-Mead, Powell, SLSQP, and TNC) were run 
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simultaneously to solve the model equations and the solution with the best modelled GRF was 

chosen for each individual trial. For more details on the solving processes, see chapter 3.2. 

B.3 Results 

The gradient descent optimisation routine was not able to find a combination of parameters to 

model GRF for 29 trials (3.4%), while modelled GRF curves showed large oscillations and 

unrealistic solutions for 27 trials (3.2%). These trials were, therefore, not included in the analysis 

and the results for the gradient descent optimisation method only included 93.5% of the trials. 

The numerical method on the other hand, could solve the model’s equations for 100% of the 

data and resulting modelled GRF curves were all realistic. Therefore, for the numerical method 

all the trials were included in the analysis. 

When using a gradient descent method, RMSE of the modelled GRF was the lowest for 

accelerations and running at low speeds but increased with increasing running speed (table B.1). 

However, the numerical method modelled GRF with substantially lower errors for these tasks. 

The least accurate modelled GRF profiles were for deceleration trials which had a very high 

RMSE (>4 N·kg-1) using gradient descent, but moderate (2-3 N·kg-1) for the numerical method. 

Similarly, impulse errors were very low (<5%) across all tasks for both optimisation methods, 

but impulses were more accurate using the numerical method. 

For both methods, impact peaks observed in the measured GRF could not always be modelled. 

For the gradient descent optimisation, impact peaks were visible in the modelled curves for 28%, 

100% and 51% of the acceleration, deceleration and constant speed running trials respectively, 

while the numerical method could model these peaks for 34%, 99% and 48% for the same tasks 

respectively. The gradient descent method modelled impact peaks with moderate to high (11.7-

17.8%) errors for running at a constant low or moderate speed, but very high (>20%) for 

accelerations, decelerations and running at high speeds. In addition, loading rate errors were 

very high (>20%) across all tasks. The numerical method, however, modelled the impact peaks 

with low to moderate errors (7.5-11%) for constant speed running, but high to very high for 

accelerations and decelerations (table B.1). Similarly, modelled loading rate values were high to 



 

118 
 

very high across tasks. However, both the impact peak and loading rate errors were substantially 

lower across tasks for the numerical method compared to the gradient descent method (table 

B.1). 

Table B.1 Modelled ground reaction force curve and loading characteristics errors 

Gradient descent method 

  RMSE 
Impulse 

error 
Impact peak 

error 
Loading rate 

error 

 N·kg-1 % 
N·s· 
kg-1 

% N·kg-1 % 
N·kg-1· 

s-1 
% 

Accelerations 1.49 40.3 0.06 2.3 4.49 30.4 848 62.1 
Decelerations 5.78 124.8 0.09 3 10.95 25.2 1178 51.5 
Constant speed running         

          Low (2-3 m·s-1) 1.26 44.7 0.09 2.4 1.87 11.7 148 28.2 
          Mod. (4-5 m·s-1) 1.81 57 0.02 0.7 3.15 17.8 221 23.7 
          High (>6 m·s-1) 2.82 64.3 0.05 2 5.40 23.6 800 51.3 
All tasks 3.02 73 0.07 2.3 8.98 24.2 1003 49.1 

Numerical method 

  RMSE 
Impulse 

error 
Impact peak 

error 
Loading rate 

error 

 N·kg-1 % 
N·s· 
kg-1 

% N·kg-1 % 
N·kg-1· 

s-1 
% 

Accelerations 0.70 9.9 0.01 0.6 2.43 18.9 487 31.3 
Decelerations 2.48 33.9 0.01 0.7 7.43 20.6 431 18.7 
Constant speed running         

          Low (2-3 m·s-1) 0.48 7.6 0.01 0.4 1.53 10.2 200 19.1 
          Mod. (4-5 m·s-1) 0.78 9.4 0.01 0.3 1.54 7.5 254 20.8 
          High (>6 m·s-1) 1.21 13.6 0.01 0.3 2.99 11 287 18.5 
All tasks 1.28 17 0.01 0.5 5.74 17.4 385 20.3 
Mean values for root mean square errors (RMSE), impulse, impact peak and loading rate 
errors of the modelled GRF profiles for different tasks. Results are for either a gradient 
descent optimisation routine (top), or a numerical optimisation method (bottom). Values are 
either absolute or relative errors compared to the measured GRF. Green shaded error values 
represent the lowest error values of the two methods.  

 

 

  



 

119 
 

From the eight different numerical solving methods used in the Python code, five gave the best 

GRF solutions for individual trials (table B.2). The BFGS solver found the best solution for the 

majority of all trials (61%), while three solving methods (CG, COBYLA and TNC) did not find 

a best solution for any of the trials. 

Table B.2 The eight numerical solvers   

Optimiser 
name 

Number of trials 
(#) 

Percentage of all trials 
(%) 

BFGS 518 61 

CG 0 0 

COBYLA 0 0 

L-BFGS-B 173 20 

Nelder-Mead 98 11 

Powell 27 3 

SLSQP 40 5 

TNC 0 0 

Total 856 100 

The eight numerical solvers used in the purpose written Python code, 
which found the best solutions for individual trials.  

 

B.4 Conclusion 

This investigation shows that a gradient descent and numerical optimisation method can both 

find acceptable results for modelled GRF profiles. However, the gradient descent method could 

not always find a (realistic) solution and the modelled GRF profiles and loading characteristics 

were most accurate when using a numerical method. Therefore, the numerical optimisation 

method was used in chapter 3 (and 4) to determine the best combination of the two mass-spring-

damper model’s eight parameters to accurately replicate GRF. 
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Appendix C:  The relationship between measured trunk 

accelerations and the two mass-spring-damper model’s 

upper mass acceleration 

 

C.1 Objective 

The results in chapter 4 have shown that trunk accelerations (TA) cannot be used to predict 

ground reaction forces (GRF) using a two mass-spring-damper model, either directly or 

indirectly. Since chapter 3 has shown that this model is able to accurately reproduce GRF for 

various tasks, it is likely that the measured TA substantially deviates from the model’s upper 

mass acceleration a1 required to accurately predict GRF. This appendix, therefore, aimed to 

explore 1) how the measured TA is related to the model’s upper mass acceleration required to 

accurately model GRF and 2) whether this relationship can be used to predict GRF from TA 

more accurately. 

C.2 Trunk and upper mass accelerations 

Measured TA signals were compared to the model’s upper mass acceleration a1 for the tasks 

described in chapter 4. As expected, TA indeed substantially deviated from the upper mass 

acceleration required to accurately model GRF across the different tasks (figure C.1). 

Differences were mainly apparent in the shapes of the acceleration profiles, as well as 

magnitudes. In contrast to the required a1, which had smooth sinusoidal shaped acceleration 

profiles, the measured TA curves contained multiple rapid oscillations and sharp peaks (figures 

C1 A, C, E and G). Moreover, the magnitude of TA peaks was typically larger than the maximal 

accelerations in the a1
 profiles. For deceleration trials, the required a1 profiles typically had a 

maximal peak earlier during stance compared to the TA. This earlier modelled a1 peak is in 

accordance with the impact peaks just after touch-down usually observed in GRF profiles for 

decelerations (figures C1 C and D). Due to the discrepancies between the TA and a1 curves 

across tasks, it was concluded that the measured TA did not represent the required a1 well enough 

to be used to accurately predict GRF. 
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Figure C.1 Representative examples of trunk accelerations (TA) and upper mass accelerations 

(a1), and measured, predicted and modelled ground reaction forces (GRF) for different tasks. 

Although TA could be replicated well by the model’s a1 (blue dashed line), the predicted GRFs 

(red dashed line) were poor. Required a1 (blue dotted line) to accurately model GRF (red 

dotted line) strongly deviated from the TA for all tasks. 
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C.3 Modifying trunk accelerations 

The above described differences between the measured TA and a1 needed for precise GRF 

estimates could possibly be related to the quality of the measured TA signal. Even though the 

GPS device in which the accelerometer was embed was carefully fitted in the pocket of a tight 

vest, several wobbling factors are likely to distort the TA signal. For example, wobbling of the 

GPS unit in the pocket of the vest and movement of the shirt and skin can introduce substantial 

noise in the measured acceleration signal. In addition, the GPS device was attached to the back 

of the upper trunk and thus away from its centre of mass. The measured TA is thus unlikely to 

be an accurate reflection of the actual movement of the trunk segment. Nevertheless, the GPS-

embedded accelerometer was attached to the trunk segment and the measured signal will thus 

be dominated by the general motion of trunk. If this general trunk movement can be extracted 

from the measured TA signal, this might be a better representation of the required a1 to accurately 

predict GRF. 

To extract the general trunk motion from the measured TA, quadratic functions were fitted to 

each individual TA signal. The aim of fitting these simple functions was to remove (or at least 

reduce) the noise due to above described factors from the TA. The quadratic fitted TA signals 

(TAQ) were replicated by adjusting the eight model parameters to fit the model’s upper mass 

acceleration a1 to TAQ, after which GRF was calculated from the following set of parameters. A 

more detailed description of this process is provided in chapter 4.2. 

Between the different tasks, a general difference in quadratic fitted TA curve shapes was 

observed (figure C.2 A, D G, J). Acceleration trials typically had an (roughly linearly) increasing 

TAQ profile, while decelerations and running at a constant speed had a more sinusoidal shaped 

TAQ. Sharp peaks and rapid oscillations in the measured TA signals, which are likely due to 

wobbling of the unit relative to the trunk, were effectively eliminated. Across trials, the maximal 

TAQ peaks were the highest for decelerations and running at high speeds. 
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Figure C.2 Quadratic fitted trunk acceleration (TAQ) signals were used as input for the 

model’s upper mass acceleration (a1) to predict GRF. General TA curve shapes showed 

different shapes between the different tasks (A, D, G, J). Although the model was able to 

accurately fit the modelled a1 to the TAQ (B, E, H, K), predicted GRF was still very poor (C, F, 

I, L). 
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Fitting simple quadratic functions to the measured TA signals did not lead to a better 

representation of the upper mass acceleration a1 required to accurately predict GRF. Despite the 

considerably simplified TAQ profiles and likely removal of the majority of wobbling effects 

from the TA, TAQ profiles still substantially differed from the required a1 for the majority of 

trials and tasks (figure C.2 B, E, H, K). Therefore, although the TAQ could be replicated by the 

model’s upper mass with very high accuracy, this did not lead to more accurate GRF predictions 

(figure C.2 C, F, I, L). Hence, modifying the measured TA could not lead to a sufficiently close 

representation of the required upper mass acceleration.  

C.4 Conclusion 

Acceleration signals measured with a trunk-mounted accelerometer considerably deviate from 

the upper mass acceleration in a two mass-spring-damper model required to accurately model 

GRF. Although the effects of factors such as unit wobbling relative to the trunk could be reduced, 

this did not lead to a more accurate representation of the required a1. The substantial differences 

between the measured TA and the model’s upper mass acceleration were, therefore, considered 

to be a major reason why GRF cannot be predicted from TA using a two mass-spring-damper 

model.  
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Appendix D:  Bounding the two mass-spring-damper 

model’s parameter search spaces  

 

D.1 Objective 

The two mass-spring-damper model parameter values required to replicate trunk accelerations 

(TA) typically fell in a different range compared to those required to reproduce ground reaction 

forces (GRF; chapter 3 and 4). Furthermore, parameter values had little physical meaning for 

the majority of trials. The difference between modelled TA and GRF parameter ranges, as well 

as the lack of physical meaning of the parameters, likely affects the regressions between both 

sets of parameters. If equally good solutions exist to replicate TA and reproduce GRF within a 

physically meaningful range of parameter values, the relationship between both parameter sets 

might be improved. Therefore, the aim of this appendix was to investigate whether acceptable 

modelled TA and GRF curves can be found within a similar and physically meaningful 

parameter space for both signals.  

D.2 Methods  

The parameters resulting from replicating TA (chapter 4) and reproducing GRF (chapter 3) were 

taken as a starting point. The eight model parameter value spaces were then bound in four steps: 

1. Model parameter values required to replicate TA and reproduce GRF were plotted for 

each individual trial in a regression plot for each parameter.   

2. Parameter regression plots were visually appraised, and bounds were defined for each 

parameter based on similarity between modelled TA and GRF parameter ranges, as well 

as the R2 values of the regressions. In addition, physical parameter meaning was 

considered when defining bounds for each parameter (e.g. a mass ratio λ > 10 is not 

realistic and was thus used as an upper bound). 

3. The model was then used to re-model TA and GRF, using the parameter upper and lower 

bounds as defined in step (2). 

4. Steps 1 to 3 were repeated until the modelled TA and GRF parameter values were within 

a similar range, and within physically sensible values. 
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D.3 Results  

Bounding the upper and lower spring natural frequencies ω1 and ω2 was highly detrimental to 

the modelled TA and GRF curves. Therefore, these parameters were only given a lower limit of 

0 (i.e. spring stiffness k1,2 >0 kN·m-1) while the upper limits were left free. When the parameter 

bounding steps were repeated, however, ω1 and ω2 naturally moved towards a similar range of 

values for both the modelled TA and GRF. After the third iteration of the bounding procedure 

RMSE values substantially increased and the process was stopped. The lower and upper limits 

for each parameter (p2 was calculated from v2, ω2 and λ as described in chapter 3.2.4) after the 

third iteration were: 

- p1  = -0.4 – 0.1 m 

- v1  = -3 – 1 m·s-1 

- v2  = -0.5 – 2 m·s-1 

- ω1  = 0 – ∞ N·m-1·kg-1 

- ω2  = 0 – ∞ N·m-1·kg-1 

- λ  = 0.5 – 6 au 

- ζ  = 0.1 – 1.5 au 
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Figure D.1 Scatter plots of the eight model parameters for each individual acceleration (blue 

circles), deceleration (red triangles) and low, moderate and high-speed running (light grey, 

dark grey and black crosses respectively) trial. Parameter values required to model trunk 

accelerations (TA) or ground reaction force (GRF) are plotted on the x-axes and y-axes 

respectively. 

 

Table D.1 Modelled trunk acceleration and ground reaction force curve errors using a free 
and bound parameter search space 

 TA (m·s-2) GRF (N·kg-1) 

 Free 
parameters 

Bound 
parameters 

Free 
parameters 

Bound 
parameters 

 Mean SD Mean SD Mean SD Mean SD 
Accelerations 3.9 ±1.8 7.1 ±12 0.69 ±0.46 0.98 ±0.60 

Decelerations 7 ±3 17.9 ±14.6 2.48 ±1.17 2.96 ±2.04 

Constant speed running         

          Low (2-3 m·s-1) 4 ±1.7 10.6 ±14.3 0.48 ±0.22 0.55 ±0.25 

          Mod. (4-5 m·s-1) 4.8 ±1.7 8.2 ±5.2 0.78 ±0.25 0.87 ±0.26 

          High (>6 m·s-1) 4.6 ±1.9 21.5 ±19.8 1.21 ±0.56 1.26 ±0.62 

All tasks 5.1 ±2.5 13.7 ±15.5 1.28 ±1.06 1.52 ±1.49 

Root mean square errors (RMSE) between the replicated and measured trunk acceleration 
(TA in m·s-2), and reproduced and measured ground reaction force (GRF in N·kg-1). Results 
are for modelled curves using a free parameter search space or a bound parameter space 
(grey shaded). Values are mean errors ± standard deviations (SD) for each task. 
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After bounding the model parameter spaces, the two mass-spring-damper model could model 

the measured TA and GRF profiles within a similar range of model parameters (figure D.1). 

Despite the substantial restrictions put on the maximal and minimal values for five parameters 

(the upper bounds for ω1 and ω2 were left free, and p2 was calculated from v2, ω2 and λ) the 

detrimental effects on the RMSE for reproduced GRF curves were small (table D.1). Errors were 

very low (<1 N·kg-1) for accelerations and running at low and moderate speeds, and low (1-2 

N·kg-1) and moderate (2-3 N·kg-1) for high-speed running and decelerations respectively. TA on 

the other hand, could not be replicated well when the model parameter search space was 

restricted. Modelled TA errors substantially increased (table D.1) and RMSEs were low (<5 m·s-

2) and moderate (5-10 m·s-2) for accelerations and running at a moderate speed, high (10-15 m·s-

2) for running at low speeds, but very high (>15 m·s-2) for running at high speeds and 

decelerations. 

From figure D.1 it appeared that there was no relationship between the two parameter sets. 

Parameter values varied throughout the bound search spaces for both the modelled TA and GRF. 

Moreover, the absence of a relationship between both parameter sets was independent of task, 

i.e. there was no consistency within or between tasks.  

D.4 Conclusion 

This investigation shows that multiple combinations of model parameters can lead to similarly 

good solutions to reproduce measured GRF profiles. Bounding the parameter search space was, 

however, highly detrimental for replicated TA curves. In addition, there was no relationship 

between any of the parameters required to model TA or GRF. It was, therefore, concluded that 

bounding model parameters could not lead to better relationships between parameters required 

to model TA and GRF and could thus not improve indirect GRF predictions from TA. 
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Appendix E:  Fixing the two mass-spring-damper model’s 

parameter values 

 

E.1 Objective 

The two mass-spring-damper model has a large amount of freedom with interdependency 

between, and variability within, its eight model parameters. As a result, it is likely that several 

combinations of parameters can give similarly good results when modelling trunk accelerations 

(TA) and/or ground reaction force (GRF) profiles (e.g. as observed for reproduced GRF in 

appendix D). Restricting the number of free model parameters to limit the model’s freedom 

might, therefore, improve the relationships for the remaining free parameters. Therefore, the aim 

of this appendix was to investigate whether fixing single or multiple parameters at a constant 

value to limit the model’s freedom could improve the linear relationships of other model 

parameters. 

E.2 Methods 

To limit the freedom of the model’s parameter spaces, the upper and lower parameter value 

limits following from appendix D were used for this analysis. First, single model parameters 

were fixed at a constant value while the seven remaining parameters were optimised to model 

GRF and TA (see the methods section of chapter 3 and 4 for more detail). Values at which the 

parameters were fixed were determined by visually evaluating the regression plots in figures 4.4 

and D1. Fixed parameter values were chosen to represent the majority of the trials, for TA as 

well as GRF parameters. In addition, GRF and TA were also modelled with several combinations 

of either two or three parameters fixed simultaneously. Fixed values for single, or a combination 

of parameters were: 
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Single fixed parameters 

- p1 = -0.1 m 

- v1 = -0.5 m·s-1 

- v2 = 0.5 m·s-1 

- ω1 = 22.5 N·m-1·kg-1 

- ω2 = 100 N·m-1·kg-1 

- λ = 3 au 

- ζ = 0.5 au 

Two fixed parameters 

- ω1 = 22.5 N·m-1·kg-1; λ = 3 au 

- ω2 = 100 N·m-1·kg-1; λ = 3 au 

Three fixed parameters 

- ω1 = 22.5 N·m-1·kg-1; ω2 = 100 N·m-1·kg-1; λ = 3 au 

After re-modelling the measured TA and GRF profiles, a new parameter regression analysis was 

performed (see chapter 4 for more detail). Linear regressions were performed for all tasks and 

trials combined. Only if R2 values were larger than 0.3 (i.e. a moderate correlation of R2 > 0.3 

(Hopkins et al., 2009)) the regression equation was used to recalculate the parameter value 

before calculating the predicted GRF. 

E.3 Results 

Fixing parameters considerably affected the distribution of model parameters required to model 

TA and GRF (figure E.1). When fixing either single or multiple parameters the free parameters 

were shifted to a narrower range. This reduction in parameter variation was mainly observed for 

replicated TA, and mass-related parameters (p1, p2, v1, v2 and λ) especially. It is likely that the 

free mass-related parameters could not account for the rapid acceleration changes typically 

observed in the measured TA profiles and, therefore, only showed minor variability when 

replicating TA. In addition, visually screening the modelled curves revealed that limiting the 

model’s freedom was highly detrimental for the replicated TA, as well as reproduced GRF 

accuracy. 
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Table E.1 Linear regressions for the eight model parameters with free, bound and fixed 
parameters 
   Bound + fixed parameter combinations 

 
Free 

params 
Bound 
params 

p1 v1 v2 ω1 ω2 λ ζ ω1, 
λ 

ω2, 
λ 

ω1, 
ω2, λ 

p1 0.06 0.36 - 4.28 4.65 1.01 3.89 0.46 4.22 9.09 2.58 0.02 

p2 0.01 0.00 0.02 0.26 0.58 0.15 4.89 0.54 3.13 8.10 1.99 0.43 

v1 0.04 1.06 1.34 - 0.13 0.00 0.00 0.17 0.59 0.23 0.00 15.77 

v2 0.08 1.79 1.99 3.31 - 2.58 0.99 0.96 2.25 1.37 1.23 0.00 

ω1 0.00 0.01 0.70 1.47 0.05 - 1.84 0.55 0.37 - 0.04 - 

ω2 0.22 0.26 2.13 0.24 0.38 8.43 - 0.01 0.16 4.49 - - 

λ 0.11 1.72 0.49 1.41 1.04 3.68 0.10 - 2.35 - - - 

ζ 0.00 0.39 0.03 0.00 9.64 1.12 0.92 0.13 - 0.44 2.01 2.52 

R2 values (∙10-2) of the linear regression between parameter values required to model trunk 
accelerations and ground reaction forces for the eight model parameters. Parameter search 
spaces were either left free, bound according to the upper and lower limits described in 
appendix D, or bound in combination with one, two or three parameters fixed at a constant 
value. Regression results are for all tasks and trials combined. Dark green shading indicates an 
increased R2 value of the bound relative to the free parameter space. Light green shading 
represents higher R2 values relative to the bound parameter space without fixed parameters. 
Only if R2 > 0.3 (i.e. 30∙10-2) the regression equation was used to recalculate the parameter. 

  

Figure E.1 Example of scatter plots of the eight model parameter values required to model TA 

and GRF when three parameters (ω1, ω2, λ) were fixed at a constant value. Scatter plots include 

each individual acceleration (blue circles), deceleration (red triangles) and low-, moderate- and 

high-speed (light grey, dark grey and black crosses respectively) trial. Parameter values 

required to model trunk accelerations (TA) or ground reaction force (GRF) are plotted on the 

x-axes and y-axes respectively. 



 

132 
 

By fixing model parameter values the relationships between modelled TA and GRF parameter 

sets could be slightly improved for the majority of parameters (table E.1). Compared to the 

bound search spaces as described in appendix D, parameter regression values slightly increased 

when fixing individual parameters or a combination of parameter values. The best relationship 

observed was R2 = 0.16 (but < 0.3) for the upper mass velocity v1 when fixing three other 

parameters (figure E.1; table E.1). Despite these improvements, however, the regressions were 

still very weak for most parameters and could thus not be used to recalculate parameters to 

achieve more accurate GRF predictions.  

E.4 Conclusion 

This investigation shows that by fixing either individual or multiple parameters at a constant 

value, relationships between modelled TA and GRF parameters sets could be slightly improved. 

However, for the majority of parameters these improvements were negligible, and the regression 

values were still very weak. It was, therefore, concluded that fixing model parameters could not 

lead to substantially stronger relationships between parameters required to model TA and GRF 

and therefore, could not lead to better indirect GRF predictions from TA.  
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Appendix F:  Simultaneously modelling trunk accelerations 

and ground reaction forces 

 

F.1 Objective 

Although the two mass-spring-damper model can be used to accurately reproduce measured 

trunk acceleration (TA) and ground reaction force (GRF) profiles separately, TA cannot be used 

to predict GRF with this model, either directly or indirectly. Appendix C has shown that this 

discrepancy is likely to be the result of the difference between the measured TA signal and the 

model’s upper mass acceleration a1 required for accurate GRF predictions. However, multiple 

combinations of model parameters can lead to similarly accurate modelled GRF (appendix D), 

and it is possible that the model can use a single set of parameters to simultaneously reproduce 

measured TA and GRF profiles. If this is indeed the case, and the detrimental effects on the 

modelled TA and GRF curves are minimal, this might allow for bridging the dissimilarities 

between the measured TA and required a1. This appendix, therefore, aimed to investigate 

whether the differences between TA and a1 can be minimised by simultaneously modelling 

measured TA and GRF with the two mass-spring-damper model. 

F.2 Methods 

Measured TA and GRF signals were modelled simultaneously with the two mass-spring-damper 

model (figure F.1). For each trial, the eight model parameters were optimised to fit the model’s 

upper mass acceleration a1 to the measured TA, while the resulting GRF was fitted to the 

measured GRF (see the methods section in chapter 3 and 4 for more detail). The best set of 

model parameters was determined by minimising the root mean square errors (RMSE) of the 

modelled a1 and GRF curves relative to the measured TA and GRF respectively. Since the aim 

of this study was to find the best solution for TA and GRF, RMSE of both curves were given an 

equal weighting during the parameter optimisation process.  
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Figure F.1 Diagram of how measured trunk accelerations (TA) and ground reaction forces 

(GRF) were simultaneously modelled with the two mass-spring-damper model. 

F.3 Results 

Across the different tasks, TA and GRF could not both be modelled well at the same time using 

a single set of model parameters (figure F.2). Reproduced TA (a1) and GRF errors both 

substantially increased when simultaneously modelled, compared to TA and GRF modelled 

separately (table F.1). For TA, RMSE increased to moderate (5-10 m·s-2) for accelerations and 

running at a low and moderate speeds, but high errors (10-15 m·s-2) for decelerations and running 

at high speeds. Similarly, mean RMSE for modelled GRF curves increased across tasks to low 

(1-2 N·kg-1; low-speed running), moderate (2-3 N·kg-1; accelerations, moderate and high-speed 

running) or very high (>4 N·kg-1; decelerations). 

Table F.1 Modelled curve errors for a1 and ground reaction force  

 TA (m·s-2) GRF (N·kg-1) 
 Separate Simultaneous Separate Simultaneous 

 Mean SD Mean SD Mean SD Mean SD 
Accelerations 3.94 ±1.8 8.79 ±3.8 0.69 ±0.46 2.25 ±1.3 
Decelerations 7.02 ±3 12.48 ±4.1 2.48 ±1.17 6.33 ±2.34 
Constant speed running         
          Low (2-3 m·s-1) 4.02 ±1.7 7.34 ±2.5 0.48 ±0.22 1.18 ±0.61 
          Moderate (4-5 m·s-1) 4.77 ±1.6 9.22 ±2.7 0.78 ±0.25 2.04 ±0.97 
          High (>6 m·s-1) 4.59 ±1.9 10.38 ±3.8 1.21 ±0.56 2.43 ±1.53 
All tasks 5.07 ±2.5 10 ±4 1.28 ±1.06 3.24 ±2.54 
Root mean square errors (RMSE) of the modelled relative to the measured trunk acceleration 
(TA) and ground reaction force (GRF) profiles. Values are mean errors ± standard deviations 
(SD) for each task, compared between separately or simultaneously modelled TA and GRF. 
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Despite the substantial detrimental effects on the modelled TA and GRF profiles, reproduced 

GRFs were generally more accurate than TA (a1; figure F.2). Visual inspection revealed that 

rapid changes (i.e. sharp peaks) in the measured signals could not be replicated well and were 

typically over-smoothed. High acceleration peaks in the TA signal (figure F.2 C and G) and the 

distinct impact peaks in the GRF curve (figure F.2 D and H) especially, were modelled very 

poorly or not at all. 

F.4 Conclusion 

The two mass-spring-damper model could not accurately replicate measured TA profiles, while 

maintaining an accurate GRF. Errors of modelled TA and GRF profiles were too large to satisfy 

the accuracy requirements for both curves simultaneously. Therefore, it was concluded that the 

two mass-spring-damper model cannot be used to accurately reproduce measured TA and GRF 

profiles using a single set of model parameters. 
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Figure F.2 Representative examples of measured trunk accelerations (TA; black solid line) 

and modelled a1 (blue dotted line) on the left, and the measured ground reaction force (GRF; 

black solid line) and predicted GRF (red dotted line) on the right, when simultaneously 

modelled. Across the different tasks TA and GRF could not both be reproduced well at the 

same time, using the same set of model parameters. 
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Appendix G:  Marker attachment locations 

 
Full-body kinematic data in chapter 5 were collected using a seventy-six retro-reflective marker 

set attached to anatomical landmarks of the body. The aim of this appendix is to clarify the 

attachment locations of segment defining and segment tracking markers (figure G.1). Markers 

for segment definition (of which some were also used for segment tracking; see figure G.1) were 

attached to the Calcaneus, lateral Calcaneus, first and fifth Metatarsus head, lateral/medial 

Malleolus, lateral/medial Epicondyle of the Femur, Femur greater Trochanter, anterior/posterior 

Superior Iliac Spine, Iliac Crest, Acromion, anterior/posterior head, shoulder, lateral/medial 

Epicondyle of the Humerus, Styloid process of the Radius and Ulna, lateral/medial Metacarpal 

head (all left and right), Cervical vertebrae 7, Thoracic vertebrae 8, and the Jugular notch and 

Xiphoid process of the Sternum. In addition, marker clusters for segment tracking were attached 

to the lateral sides of the shanks and thighs (four markers per cluster), as well as the forearms 

and upper arms (three markers per cluster). 

Figure G.1 Attachment locations of segment tracking markers (blue), segment defining 

markers (red) and markers used for both (black). 
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Appendix H:  Marker trajectory filter cut-off frequencies 

 

H.1 Objective 

Segmental accelerations used to estimate ground reaction forces (GRFs) in chapter 5 were 

derived from motion capture-based marker trajectories. Accuracy of estimated GRF profiles is 

thus dependent on marker trajectory processing before calculating the segmental centre of mass 

(CoM) accelerations. The aim of this appendix was, therefore, to investigate what filter cut-off 

frequency lead to the most accurate GRF estimates. 

H.2 Methods 

Kinematic and kinetic data for ten participants (7 males and 3 females, age 24±5 yrs, height 

176±8 cm, mass 72±9 kg) was used (see the methods section of chapter 5 for more detail on the 

data collection and processing). Marker trajectories were filtered with a 2nd order Butterworth 

low-pass filter using four different cut-off frequencies (25 Hz, 20 Hz, 15 Hz and 10 Hz), while 

force data were filtered at 50 Hz. Visual screening of the data revealed relatively large trunk 

marker vibrations compared to the other markers, which was likely due to marker attachment to 

the shirt rather than the skin. Therefore, combinations of filter cut-off frequencies (20-15 Hz, 

20-10 Hz and 15-10 Hz) were also examined, i.e. markers defining the trunk segment were 

filtered at a lower cut-off frequency than the other markers. Trunk defining markers that were 

filtered at a lower cut-off frequency were those attached to the left and right Iliac Crest and 

Acromion, Cervical vertebrae 7, Thoracic vertebrae 8, and the Jugular notch and Xiphoid 

process of the Sternum.      

H.3 Results 

Estimated GRF errors typically decreased for lower cut-off frequencies (table H.1). For higher 

frequencies (25 Hz, 20 Hz) the estimated GRF profiles included more oscillations compared to 

the lower cut-off frequencies (15 Hz, 10 Hz) (figure H.1). Consequently, RMSEs were lower 

across all tasks when marker data were filtered at 15 Hz, compared to 25 and 20 Hz. However, 

only for accelerations and constant speed running, errors were further reduced when a 10 Hz 

filter was applied, while over-smoothing of estimated GRF profiles resulted in the loss of 
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important GRF characteristics (e.g. impact peak) for the other tasks (figure H.1 C, D, E). When 

a combination of two cut-off frequencies (20-15, 20-10 and 15-10 Hz) was used, however, 

RMSE values were further reduced. For most tasks separately, as well as all trials combined, a 

combination where the trunk was filtered at 10 Hz resulted in the most accurate GRF estimates 

(table H.1; figure H.1). 

Figure H.1 Representative examples of measured ground reaction force (GRF; black solid 

line) profiles and GRF estimated from marker trajectories filtered at 25 Hz (blue dotted line), 

20-10 Hz (red dashed line) or 10 Hz (green dashed line), for each task. 
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H.4 Conclusions 

Estimated GRF profiles were more accurate across tasks when a combination of different cut-

off frequencies was used for different markers. More specifically, the best results were obtained 

when marker trajectories were filtered at a 20 Hz cut-off frequency, with trunk defining markers 

filtered at 10 Hz. These cut-off frequencies were, therefore, used to filter marker trajectory data 

before further processing. 

  

Table H.1 Marker trajectory filter cut-off frequency comparison 

  25 Hz 20 Hz 
20-15 

Hz 
20-10 

Hz 
15 Hz 

15-10 
Hz 

10 Hz 

Accelerations 3.7±1 3.4±0.9 3.1±0.8 2.8±0.7 3±0.8 2.6±0.6 2.4±0.6 

Decelerations 7.7±2.4 7.4±2.3 6.8±2 6±1.8 7.3±2.2 6.4±1.9 8±2.5 

90° Cuts 3.4±0.8 3.2±0.8 3±0.7 2.7±0.7 3.1±0.8 2.8±0.7 3.4±0.9 

Constant speed running        

          Low (2-3 m·s-1) 2.3±0.6 2.1±0.6 1.9±0.5 1.7±0.4 1.9±0.5 1.6±0.4 1.7±0.5 

          Moderate (4-5 m·s-1) 3.3±0.9 3.1±0.8 2.9±0.7 2.6±0.6 3±0.8 2.6±0.6 2.9±0.7 

          High (>6 m·s-1) 5.4±1.3 5.1±1.3 4.8±1.2 4.4±1 4.9±1.2 4.4±1 4.7±1.3 

All tasks 4.3±2.2 4.1±2.1 3.8±2 3.4±1.7 3.9±2.2 3.4±1.9 3.9±2.5 

Root mean square errors (RMSE) for each (combination of) filter cut-off frequencies. Values 
are means ± standard deviation per task, as well as all tasks combined. The best cut-off 
frequency per task is highlighted in green shading. 
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Appendix I:  Measuring segmental accelerations: motion 

capture vs. accelerometers 

 

I.1 Objective 

Accurately estimating ground reaction forces (GRFs) from segmental accelerations as described 

in chapter 5, requires measured accelerations to correctly represent the actual segmental centre 

of mass (CoM) acceleration. If not, estimated GRF profiles will differ from the real GRF, with 

higher errors as acceleration inaccuracies increase. Therefore, the aim of this appendix was to 

investigate how well segmental acceleration signals measured with body-worn accelerometers 

can represent the actual segmental CoM accelerations. 

I.2 Methods 

Segmental accelerations measured with body-worn accelerometers were compared to ‘gold-

standard’ segmental accelerations derived from marker trajectory data, for a single participant 

(male, age 22 yrs, height 183 cm, mass 70.7 kg). Five tri-axial wireless accelerometers (DTS 3D 

accelerometer 518, 5.7 g, L:19 mm, W:14.2 mm, H:6.3 mm, Noraxon Inc, Scottsdale, AZ, USA) 

sampling at 500 Hz, were attached to the medial side of both shanks and thighs, and the back of 

the pelvis (figure I.1). Accelerometry and marker trajectory data were synchronously recorded 

using Qualisys Track Manager Software (QTM version 2.16, Qualisys Inc., Gothenberg, 

Sweden). Marker trajectory based resultant segmental CoM accelerations were estimated from 

a six-degree-of-freedom model (see the methods section of chapter 5 for more details) and 

compared to resultant segmental acceleration measured from accelerometers during each ground 

contact phase.  
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Figure I.1 Attachment of the Noraxon DTS 3D accelerometer to the marker cluster plate (A), 

back of the pelvis (B), and medial side of the thigh (C) and shank (D).  

 

I.3 Results 

Segmental acceleration signals of the shanks, thighs and pelvis from body-worn accelerometers, 

represented the general segmental acceleration profiles measured with a motion capture system 

(figure I.2). However, accelerometers considerably over- and underestimated the marker 

trajectory based segmental accelerations for all tasks. Moreover, substantial differences were 

found between both methods in the timing segmental acceleration peaks. Both methods were 

most similar for the lower intensity tasks (i.e. accelerations and running at low speeds) but 

deviated more for decelerations and at higher running speeds (figure I.2). In general, oscillations 

and segmental acceleration differences between methods were the largest for the thighs, possibly 

due to the relatively large muscles and associated soft-tissue artefacts. 
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Figure I.2 Representative examples of segmental accelerations from motion capture-based 

marker trajectories (MoCap; black solid line) and accelerometry (Acclrm; blue dotted line). 

Columns represent the segmental accelerations of the left/right shank and thigh, and pelvis, 

while rows represent the different tasks. 
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I.4 Conclusions 

Acceleration signals from body-worn accelerometers substantially deviated from segmental 

CoM accelerations derived from marker trajectory data measured with a motion capture system. 

If segmental accelerations are used to estimate GRF as described in chapter 5, an accumulation 

of measurement errors for each segment is likely to lead to considerable errors in the estimated 

GRF profiles. Future work should, therefore, investigate whether limitations of accelerometry 

can be overcome (e.g. by improving unit placement) and a more accurate measurements of 

segment CoM accelerations from accelerometers can be achieved. 
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Appendix J:  Task specific principal component analysis 

 

J.1 Objective 

The principal component analysis (PCA) described in chapter 6 was performed on a combination 

of segmental accelerations for multiple participants and tasks. However, unique segmental 

contributions to task-specific ground reaction force (GRF) features might not be highlighted by 

such a combined analysis. Therefore, this appendix aimed to examine if a task-specific PCA 

could reveal additional information about key segmental accelerations and associated GRF 

features. 

J.2 Methods 

Data were processed, normalised and scaled as described in the methods section of chapter 6. 

However, participant- and task-specific acceleration matrices for each participant 𝐀𝐬𝐮𝐛𝐣,𝐭𝐚𝐬𝐤′′′ 

were combined in six task-specific segmental acceleration matrices 𝐀𝐭𝐚𝐬𝐤, rather than a single 

matrix for all tasks. The PCA was then performed on each task-specific matrix 𝐀𝐭𝐚𝐬𝐤, and further 

processed and analysed as described in the methods section of chapter 6. 

J.3 Results 

Similar to the combined PCA, the first principal component (PC) from task-specific PCAs 

primarily explained the majority of the overall GRF impulse for all the different tasks, while the 

second principal GRF (PGRF) contained clear impact peak features for decelerations, 90° cuts 

and running at low and moderate speeds (figure J.1). For accelerations and high-speed running 

tasks however, high-frequency GRF (and segmental accelerations) characteristics associated 

with the impacts of landing were primarily explained by PC3, emphasising the relatively smaller 

importance of impact features in these tasks. Furthermore, across tasks PC4 and PC5 mainly 

explained minor contributions to the impact features of the GRF profile during the first half of 

stance.  

When higher PCs were included (i.e. k>5), summed PGRF errors steadily and consistently 

decreased (figure J.2). As for the combined PCA, these PCs contained relatively constant PAs 
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of the arm and leg segments throughout the stance phase and primarily increased the overall 

magnitude of the summed PGRF, rather than influence specific GRF features. For accelerations 

and high-speed running however, errors decreased more rapidly for a task-specific PCA, when 

the number of PCs was increased. This discrepancy was likely the result of the more profound 

arm-swing in these tasks, which could be explained better by the first few PCs of a task-specific 

PCA. To achieve mean summed PGRF errors within 10% of the mean RMSE for GRF from all 

45 PCs (i.e. the original data), a total of 4 (accelerations), 2 (decelerations), 15 (90° cuts), 3 (low-

speed running), 5 (moderate-speed running) and 4 (high-speed running) PCs were required 

respectively, which was slightly lower compared to the combined PCA for all tasks except 90° 

cuts (no change). 

J.4 Conclusions 

The relative importance of landing associated GRF features and errors for summed PGRF 

profiles were slightly different for acceleration tasks and high-speed running, when task-specific 

PCAs was used. However, differences were small and overall results from task-specific PCAs 

were highly comparable to the outcomes of the PCA for all tasks combined, as described in 

chapter 6. Therefore, although subtle differences between tasks can be highlighted using task-

specific PCA analyses, a combined PCA was deemed acceptable for the purposes of chapter 6.  
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Figure J.1 Mean principal ground reaction forces (PGRFs) calculated from the first five principal components (PCs), for each task. PGRFs were calculated from principal 

accelerations (PAs) reconstructed from either the kth PC (top row), or the sum of the first k PCs (∑PGRF1-k; middle row). Root mean square errors (RMSE; bottom row) are 

mean errors for the ∑PGRF profiles and the horizontal black line represents the RMSE for ∑PGRFs from all 45 PCs (i.e. the original data).
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Figure J.2 Root mean square error (RMSE) values for ground reaction forces (GRFs) 

reconstructed from k summed principal components (PCk). Mean and standard deviations (SD) 

of RMSEs for summed principal GRFs were compared between the task-specific (blue solid 

line and shaded area) principal component analysis (PCA) or a PCA on all data combined (red 

solid line and shaded area).  
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