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The accretion of hydrogen onto a white dwarf star ignites a thermonuclear runaway in the 

accumulated envelope, leading to luminosities up to 1 million times that of the Sun and a 

high-velocity mass ejection that produces a remnant shell – a classical nova eruption1,2. Close 

to the upper mass limit of a white dwarf3 (1.4Msun), rapid accretion of hydrogen 

(~10-7Msun/yr) from a binary star companion leads to frequent eruptions on timescales of 

years4,5 to decades6. Such systems are known as recurrent novae. The ejecta of recurrent 

novae, initially moving at up to 10,000km/s(7), must sweep-up the surrounding interstellar 

medium and evacuate cavities around the nova binary. No remnant larger than one parsec 

from any single classical or recurrent nova eruption is known8,9,10, but thousands of 

successive recurrent nova eruptions should be capable of generating shells ~100-1,000 times 

this size. Here we report that the most rapidly recurring nova, M31N 2008-12a, which erupts 

annually11, is surrounded by such a nova super-remnant with a projected size of at least 134 

by 90 parsecs. Larger than almost all known remnants of supernova explosions12, this 

enormous shell demonstrates that M31N 2008-12a has erupted with high frequency for 

millions of years.  

 

Subject terms: Stars Novae 

 

Located within the disk of the Andromeda Galaxy (M31), the rapidly recurring nova M31N 2008-

12a has erupted annually since at least 200813. The eruptions of M31N 2008-12a (hereafter ‘12a’) 

exhibit the fastest optical evolution, the highest ejection velocities, the hottest X-ray source, and 

the most rapid recurrence cycle of any known thermonuclear nova11. Combined, these observations 

require the most massive white dwarf (WD) ever discovered14 (1.38Msun), accreting at the largest 



rate seen in any nova system15 (>10-7Msun/yr). Hubble Space Telescope (HST) ultraviolet 

spectroscopy of the 2015 eruption uncovered no evidence for neon in the ejecta, which is 

consistent with – but not conclusive proof of – a carbon-oxygen WD16, one which must have 

grown from an initial formation mass of at most 1.1Msun5,17,18. 

Pre-existing ground-based narrow-band Ha imaging shows a partially complete shell-like structure 

spatially coincident with the nova19,20. The full ring of this shell-like nebula surrounding 12a is 

clearly visible in newly obtained deep ground-based and HST observations (Fig. 1; see Methods) – 

the proposed nova super-remnant. The super-remnant is elliptical and brighter to the southwest 

than it is to the northeast. We measure the projected semi-major axes to the inner and outer edge of 

the bright super-remnant shell to be 52 and 67pc, respectively, a shell thickness of 22%. If 

dynamic in nature, the pre-existing interstellar medium (ISM) has been swept-up and compressed 

by a factor of ~2. There is a sharply defined outer edge visible to the south and west. The well-

defined elliptical boundary of the super-remnant implies that it has not been substantially shaped 

by the ISM, but that such a geometry was imparted by the nova eruptions and has largely persisted. 

The high spatial resolution of the HST images reveals that the super-remnant outer-shell is not 

smooth, as seen from the ground, but fragmented into knots and radially nested filaments, 

reminiscent of the handful of interacting nova shells seen around the Galactic recurrent nova 

T Pyxidis21,22.  

Newly obtained deep spectroscopy of the super-remnant shell (see Fig. 2 and Methods) reveals 

strong and narrow emission lines from the hydrogen Balmer series with natural widths narrower 

than the instrumental resolution (~180km/s for Ha). The presence of the [O II] (3,726/3,729Å) and 

[S II] (6,716/6,731Å) doublets place an upper limit on the electron density of the emitting gas of 

~3,000cm-3(23). The lack of [O III] indicates that there is no nearby source of ionising radiation and 



that the material is of sufficient age to have cooled below the ionisation temperature of O+. No 

[O I] lines are detected, suggesting minimal shock heating. As the [N II] (6,548/6,584Å) doublet is 

visible, but the [N II] (5,755Å) line is not, we can place a 3s limit on the electron temperature of 

<9,000K(23). The [N II]/Ha line-intensity ratio is 0.54±0.02, the [S II]/Ha ratio is 0.48±0.04, while 

the [S II] doublet ratio itself is 1.42±0.05 and indicates an electron density <100cm-3(23) within the 

bright outer-shell of the super-remnant. With a compression factor of ~2, the pre-nova ISM density 

must have been <50cm-3. This density and measurements of the super-remnant shell size (Fig. 1) 

indicate the shell mass is <7´105Msun (see Methods).  

A second spectrum contains emission from a bright ‘knot’ slightly within the outer-shell to the east 

of 12a (see Figs. 1b and 2, and Methods). This is similar to, but fainter than, that of the outer-shell. 

However, the knot spectrum contains strong [O III] (4,959/5,007Å) emission, indicating a more 

extreme temperature or radiation environment closer to the nova system. The lack of [O III] 

(4,363Å) only allows a weak temperature constraint of <160,000K, the knot [N II] emission 

indicates T <18,000K. 

Utilising the pre-existing ground-based imaging and serendipitous spectroscopy the origin of the 

nebulosity could not be confirmed19. Possible sources of an elliptical nebular shell could include a 

supernova remnant (SNR), a ‘superbubble’, or photoionization phenomena, such as a fossil H II 

region. 

The [S II]/Ha ratio is marginally consistent with the lower cut off (³0.5)24,25,26 required to suggest 

a ‘forbidden line’ SNR candidate, but the lack of [O III] and [O I] emission26 strongly suggests that 

the outer-shell is not a SNR. Moreover, there are no known radio sources close to 12a25,27 and the 

X-ray flux upper limit is below that of known M31 SNRs (see Methods). We conclude that the 

super-remnant is not a SNR.  



Superbubbles, caused by the winds of massive stars and supernovae are typically observed 

surrounding OB associations. HST observations of the region reveal no such associations within 

the super-remnant (see Methods) and no nearby SNRs have been identified. Known Galactic fossil 

H II regions are typically much smaller than the super-remnant. Although 12a has likely undergone 

eruptions for a long period, the luminosity of the eruptions is not high enough to grow a 

photoionized region to the size of the super-remnant (see Methods). 

To demonstrate the viability of multiple recurrent nova eruptions producing a vast super-remnant, 

we performed a series of one-dimensional hydrodynamic simulations of the ejecta, their self-

interaction, and their interaction with the surrounding environment. Results of our simulations of 

up to 100,000 separate but interacting ejecta are presented in Fig. 3. The simulations (Fig. 3a-c) 

illustrate how repeated nova eruptions create a vast, evacuated cavity around the system, by 

continually sweeping up the ISM and piling it up within a shell at the edge of the growing super-

remnant (Fig. 3d). In Fig. 3e, the observed super-remnant radial profile is compared to the 

simulations (scaled to the size of the nebula), demonstrating striking similarity at scales above 

10pc. These profiles are consistent with a shell rather than a ring (see Methods). 

Such repeated eruptions sweep up 17Msun of ISM after 100,000 eruptions (see Methods), ~3,000 

times the mass ejected by the nova over this period. Therefore, super-remnants must comprise 

almost exclusively swept up material and will have an ISM-like, not nova-like, composition; the 

super-remnant He I/Ha line-strength ratio of <0.04 is consistent with those observed in warm 

diffuse ISM28. The He I/Ha ratio of the 12a ejecta has been repeatedly measured and varies from 

0.16-0.4811, driven by the high helium abundance of nova ejecta4. 

The super-remnant contains three distinct regions, as marked in Fig. 3b (also see Methods): the 

inner cavity, where recent ejecta effectively undergo free, high-velocity expansion while cooling 



adiabatically; the ejecta pile-up, where the ejecta from successive eruptions eventually collide as 

preceding eruptions are slowed by interaction with the ISM, with high-velocity inter-ejecta shocks 

driving significant heating and deceleration of this gas; and the super-remnant shell, which 

consists almost entirely of swept-up ISM that is slowly driven outward by the multiple-ejecta pile-

up culminating at its inner edge. The radii of the outer and inner edges of the super-remnant 

increase with a power-law-like time dependence (Fig. 3d), maintaining a shell thickness of ~22%, 

consistent with the observations. Once established, the peak shell over-density remains at four 

times the ISM density (Fig. 3a-c). 

The computational intensity limited simulations to 100,000 eruptions; continued growth of the 

super-remnant has been explored by extrapolation to later times (see Methods). Our models show 

that the 12a super-remnant has been built up by annual nova eruptions sweeping up the 

surrounding ISM over 6´106 years (Fig. 3d). Over that time, the outer-shell of the super-remnant 

has cooled sufficiently below 104K to explain the observed spectrum (Fig. 3f). Throughout the 

evolution, the high temperature of the pile-up region is however maintained by the continual 

arrival of high-velocity ejecta, a possible explanation of the inner knot spectrum. The predicted 

X-ray luminosity of the super-remnant is orders of magnitude below current detection capabilities 

(see Methods). The simulations show that the total mass swept up by the eruptions is ~3´104Msun, 

consistent with the upper limit derived from the observations. The size and mass of this 

super-remnant demonstrate that 12a has not just been erupting frequently for a decade as observed, 

but for millions of years. 

The 12a WD has an accretion rate of ~1.6´10-7Msun/yr(14) and a current accretion efficiency (the 

proportion of accreted material retained by the WD post-eruption) >60%14,15. Assuming a WD 

formation mass of ~1Msun, an average efficiency of just 40% over the age of the remnant is 



required to grow the WD to the maximum mass permissible before collapse ensues3 (1.4Msun; the 

Chandrasekhar limit). This is consistent with predictions of increasing accretion efficiency as the 

WD mass grows5.  

The discovery of additional super-remnants around other accreting WDs will provide striking 

signposts to systems undergoing regular eruptions over long periods of time. Our simulations show 

that this super-remnant, the first discovered extragalactic nova shell, is not static and will continue 

to grow at least as long as nova eruptions continue in the system. Any nova super-remnants around 

accreting carbon-oxygen WDs will ultimately be destroyed by the explosion of their parent system 

as a Type Ia supernova. M31N 2008-12a is predicted to surpass the Chandrasekhar limit in less 

than 40,000 years15. At such time, the underlying composition of the WD16 will be revealed 

incontrovertibly when either a Type Ia supernova29, or an accretion induced collapse of the WD to 

a neutron star30, is observed.  
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Main Figure Legends 

Figure 1. M31N 2008-12a and its surrounding super remnant. (a), Liverpool 

Telescope narrow-band Ha+[N II] continuum-subtracted (see Methods) image of the 

region surrounding M31N 2008-12a. The majority of stellar sources have been removed, 

but the eight dark-blue sources indicate field stars only detected in continuum light. The 

presence of the closed nebula is seen within the white dashed ellipse, as is its asymmetry 

and varying luminosity around the outer ‘shell’. The position of M31N 2008-12a is 

marked and the offset from the geometric centre is indicated by the black line. (b), 

Hubble Space Telescope Ha+[N II] continuum-subtracted (see Methods) image of the 

same region; all stellar sources have been removed via the subtraction process. The high 

spatial resolution of this image reveals that the nebulosity is not smooth as imaged from 

the ground, but fragmented and filamentary in nature, reminiscent of the ejecta of the 

Galactic recurrent nova T Pyxidis22. The red squares mark the location of the two regions 

discussed in the text; the large square shows the bright western shell, and the small square 

the eastern ‘knot’. (c), zoomed in Hubble Space Telescope Ha+[N II] image showing the 



region within the large red box in the centre panel. To the top of this panel three long 

‘nested’ filaments are discernible, separated by only 5 and 12pc, respectively. 

Figure 2. Spectroscopy of the super remnant shell. The Gran Telescopio Canarias 

spectrum (top; black) of the bright western part of the nova super-remnant shell (position 

as indicated in Fig. 1). This spectrum shows negligible continuum emission punctuated 

by strong hydrogen Balmer series lines (Ha through Hd) and forbidden or ‘nebular’ lines 

of [N II], [O II], and [S II]. With a spectral resolution of 5.3Å, the Ha+[N II] and [S II] 

lines are easily resolved, but the [O II] doublet is blended. No other lines can be reliably 

confirmed. The lower spectrum (grey) is that of the inner eastern knot (see Fig. 1). This 

spectrum has been shifted down in flux by 2´10-17 erg s-1 cm-2 Å-1 for clarity. All lines 

visible in the outer-shell spectrum are present, but they have been joined by strong [O III] 

(4,959/5,007Å) lines. Gaps in the spectra indicate areas where significant skyline 

subtraction residuals remained. Both spectra have been flux calibrated relative to the 

Hobby Eberly Telescope spectrum of the bright western part of the super-remnant shell 

(see Methods). 

Figure 3. Results of hydrodynamic simulations of the interacting ejecta of multiple 

recurrent nova eruptions. (a-c), the radial density profile around M31N 2008-12a. The 

solid lines illustrate the simulated density profile from 2-100,000 eruptions (see 

respective keys). The lower and upper dotted lines show the ISM and outer-shell peak 

densities, respectively. (d), the upper solid line illustrates the growth of the outer edge of 

the super-remnant shell over 100,000 eruptions, the lower solid line shows the inner edge 

growth. The diagonal dotted lines are extrapolations of the radial growth curves to further 

eruptions. The upper/lower grey lines indicate the growth of the outer edge for 



lower/higher ISM densities, respectively. The horizontal dotted line is the maximum 

projected radius of the M31N 2008-12a super-remnant (67pc; the 45pc semi-minor axis is 

also shown). (e), the radial Ha+[N II] flux from the LT (grey) and HST (red) imaging 

compared to the simulated super-remnant hydrogen column (black). The simulation has 

been rescaled from 100,000 eruptions to the observed size of the remnant. (f), the 

super-remnant temperature evolution. The solid black line indicates simulations of 

100,000 eruptions, the red/green lines show the effects of a lower/higher ISM density, 

respectively. An extrapolation to further eruptions is shown by the diagonal black dotted 

line, with the current predicted shell temperature of ~1,200K indicated to the lower-right. 

The solid blue line indicates the evolution of the mean electron temperature within the 

ejecta pile-up region. The horizontal lines indicate the shell electron temperature upper 

limit as required by the spectroscopy; and the ionisation temperatures of O+ and N+, as 

required to observe [O III] or [N III] lines in the spectra.  

 
 
Methods 
 
1. M31N 2008-12a 

The recurrent nova M31N 2008-12a (hereafter ‘12a’) is located in north-eastern part of 

the outer disk of M31 with equatorial coordinates 0h45m28.89s +41°54¢10.2¢¢ (J2000)31. 

Eruptions have been detected in each year from 2008 to 2017 and recovered from 

archival X-ray observations taken in 1992, 1993, and 200132. The 2013-2017 eruptions 

have been studied extensively in the X-ray, far- and near-ultraviolet, and optical. The 

recurrence period of the system is 347±10 days11, although an alias of 174±10 days33 

cannot yet be entirely excluded. The mass donor has been identified as a ‘red clump’ 



star15, but based on Galactic recurrent nova systems6 is most likely to be a low-luminosity 

red giant, with accretion driven either by Roche lobe overflow or by the red giant wind. 

Spectroscopy of the 2012-2017 eruptions has shown strong evidence for the deceleration 

of the 12a ejecta over the first 5 days post-eruption as they interact with and shock 

circumbinary material, which must be replenished between each eruption11,19. The most 

likely source of this material is from a donor wind, although an accretion disk wind has 

also been proposed15. 

Short recurrence times are driven by the combination of a high-mass WD and a high 

mass accretion rate4. Among Galactic systems, U Scorpii exhibits the shortest recurrence 

period of ~10 years6, although recently a number of other short-period (<10 years, but >1 

year) systems have been discovered in M3134. 

2. Ground-based imaging observations 

Nebulosity in the region around 12a had first been identified as a ‘ring’ like structure as 

part of a narrow-band survey of M31 undertaken in 198720, 21 years before the first 

optical eruption was discovered. Following the 2015 eruption of 12a, an inspection of Ha 

data collected using the Steward 2.3m Bok Telescope in 2005 and 2006 (see Extended 

Data Fig. 1a) marked the ‘rediscovery’ of the nebulosity but its first association with the 

recurrent nova19. A further series of 20´180s narrow-band Ha images of the nebula were 

taken using the IO:O CCD camera on the 2.0m fully robotic Liverpool Telescope (LT35) 

on 2014 July 3019. The narrow-band Ha filter on the LT has a bandpass full-width at 

half-maximum (FWHM) of 100Å and therefore contains Ha+[N II] emission. 

Subsequently, those data were supplemented by an additional series of 20´180s 

Ha+[N II] images taken between the 2014 and 2015 eruptions of 12a and by 66´300s 



Ha+[N II] images obtained during the 2014 eruption19. When combined, these produced a 

new deep 27ks Ha+[N II] image of 12a and the surrounding region. A deep (55.6ks) 

broad-band Sloan r¢-band image of the region was also produced by combining all 

available LT observations of the 2014 and 2015 eruption campaigns11,19. 

These data were processed, co-aligned, and stacked using standard tools within the 

IRAF36 environment. DAOPHOT37 was then utilised to perform photometry on all 

sources common to the Ha+[N II] and r¢ images, which were then removed, before 

photometrically aligning the data, and subtracting. The resultant continuum-subtracted 

Ha+[N II] image is shown in Fig. 1a. 

The radial profile of the super-remnant was produced by performing annular photometry 

of the region, centred on the apparent geometric centre of the remnant (0h45m28.6s 

+41°54¢13¢¢), using elliptical annuli with an axial ratio of 3:2 and position angle of 40°. 

The radial profile of the LT data out to ~550pc from 12a is shown in Fig. 3e. This figure 

clearly indicates the peak in Ha+[N II] flux at ~67pc, but also the flux from within the 

super-remnant, compared with the surrounding region in M31 (effectively zero). The 

Ha+[N II] emission from the inner region is approximately 1/3 that of the outer-shell. 

This implies that the observed phenomenon is a three-dimensional limb-brightened shell 

and not a two-dimensional ring approximately aligned to the plane of the sky. 

3. Hubble Space Telescope observations 

Ten orbits of Cycle 24 HST time were used to obtain Ha+[N II] imaging of the nebulosity 

around 12a (GO:14651). These observations were conducted on 2016 December 7, 8, 9, 

10, 11, and 17. By chance, the 2016 eruption of 12a was captured in those observations 

on December 1713. 



The orbits were split into five pairs, with each pair collecting narrow-band imaging 

through the F675N (Ha+[N II]) filter for one orbit, and through the F645N filter (for 

continuum subtraction) for the second orbit; both utilising the UVIS mode of the Wide 

Field Camera 3 instrument. The total exposure time for each F675N and F645N orbit was 

2,694s and 2,805s, respectively. The light-grey shaded region in Fig. 2 indicates the 

FWHM of the F645N filter, confirming that it is not affected by any line emission from 

the super-remnant. 

For each filter, a three-point dither was applied to enable the removal of detector defects 

and cosmic ray rejection. The dither pattern of each visit was further offset to allow for 

enhanced spatial resolution. A post-flash signal of 12 electrons was included to minimise 

losses due to non-ideal charge transfer efficiency. These data were reduced using the 

STScI calwfc pipeline38, and Drizzlpac was used to align and combine the data to create 

the final images (Fig. 1b & 1c) with spatial resolution of 0.0333¢¢/pixel (~0.1pc at the 

distance of M31). Continuum subtraction was achieved by flux aligning the images using 

resolved stellar sources in both the F645N and F675N images. As 12a itself was detected 

in all five observations (and in eruption in one of those) and is an Ha emitter during 

eruption and quiescence, this method did not subtract 12a itself from these images. The 

super-remnant radial profile based on the HST observations was produced in a similar 

manner for that from the LT, the HST data have been truncated at 2pc to remove the 

effect of the eruption of 12a. 

HST Wide Field Camera 3 images of the region around 12a were taken through broad-

band optical and ultraviolet filters during cycle 23 (GO:14125)15. These images were 

processed and combined in a similar fashion to the narrow-band Ha+[N II] images. A 



sample of these images is shown in Extended Data Fig. 1b-d. Consistent with the ground-

based spectra, there is no evidence for any continuum emission from any part of the 

super-remnant in these images, nor any strong UV sources (besides 12a). 

4. Ground-based spectroscopic observations 

Five 30-minute spectra spanning the wavelength range from 3,670 to 7,870Å were taken 

with the OSIRIS instrument on the Gran Telescopio Canarias on 2017 January 16. We 

used a slit width of 0.6¢¢ orientated east-west and the ‘R1000B’ grism, achieving a 

spectral resolution of 5.3Å (~250 km/s for Ha). After image reduction, cosmic ray, and 

two-dimensional sky background removal using IRAF, the five spectra were co-added, 

and the one-dimensional spectra of the super-remnant shell and eastern ‘knot’ were 

optimally extracted using PAMELA (part of the Starlink software package39). 

On 2018 January 12, the super-remnant was observed for 2´757s through 2.2¢¢ seeing 

with the blue feed of the new integral-field unit (IFU) low-resolution spectrograph 

(LRS2-B)40 on the Hobby-Eberly Telescope (HET). This double-armed instrument 

surveys a 12¢¢´6¢¢ area on the sky using an array of 22´13 lenslet-coupled fibres, and 

produces an image scale of 0.59¢¢/fibre. The “Blue Arm” of LRS2-B covers the 

wavelength range 3700–4700Å at R~1,910 resolution, while the “Orange Arm” 

simultaneously records the region 4,600–7,000Å at R~1140. We note that because 

LRS2-B employs lenslets, there are no dead spots between the fibres, hence many of the 

problems associated with faint-object spectrophotometry – such as atmospheric 

dispersion, slit losses, and lack of data acquisition due to imprecise astrometry – are 

mitigated. The HET data were reduced using the procedures described in (ref. 41), flux 

calibration was achieved via comparison to the tertiary spectrophotometric standard star 



HD 289002(42). By comparing the emission line fluxes between the outer-shell spectra 

from HET (flux calibrated) and GTC, an approximate flux calibration was applied to both 

the GTC spectra. 

In Fig. 2 the flux calibrated GTC spectra of the super-remnant outer-shell (black) and the 

inner eastern knot (grey) are presented. In Extended Data Fig. 2 we show the HET 

spectrum of the outer-shell. In addition to hydrogen Balmer series lines, the GTC 

spectrum of the outer-shell included emission lines from the resolved [N II] 

(6,548/6,584Å) and [S II] (6,716/6,731Å) doublets, the unresolved [O II] (3,726/3,729Å) 

doublet can be seen, all on top of a negligible continuum flux. The higher spectral 

resolution, but lower S/N, HET spectrum resolved the [O II] doublet (see Extended Data 

Fig. 2 inset). The [O II] doublet ratio ([O II] 3,729/[O II] 3,726) is 1.5±0.3, consistent with 

the outer-shell density limit of <100cm-3(23), as derived from the [S II] doublet. There is 

little evidence for any other species, including the forbidden lines of O I or O III – if seen, 

both are indicative of shock heating. There are no He lines observed.  

While the inner ‘knot’ spectrum is broadly similar to that of the super-remnant shell it is 

significantly fainter (Fig. 2). The [O II] emission in the knot has been joined by strong [O 

III] (4,959/5,007Å) emission. The knot [O III] (5,007Å) line intensity surpasses that of 

Hb, and the [N II] (6,584Å) line is as strong as Ha. The [O III] (4,363Å) line and again 

the [N II] (5,755Å) line are not observed. The [N II]/Ha ratio in the knot is 1.23±0.08, 

and [S II]/Ha = 1.54±0.09, the [S II] doublet ratio ([S II] 6,717/[S II] 6,731) is 1.41±0.07, 

and the [O III] (5,007Å)/Hb ratio is 1.8±0.5. The line ratios in the knot spectrum indicate 

a similar density upper limit to the super-remnant shell. However, these ratios also point 

toward the inner knot containing much more strongly ionised gas. 



Given its location within the super-remnant, it is plausible that the knot spectrum contains 

contributions from both the outer-shell (giving rise to the Balmer and [O II] emission, and 

a contribution to the [N II] and [S II]) and the hotter transition region between outer-shell 

and the ejecta pile-up region (leading to the [O III] and enhanced [N II] and [S II] 

emission). 

5. The shell mass, luminosity, and the motion of M31N 2008-12a 

The upper limit on the shell mass of the super-remnant was estimated from the imaging 

and spectroscopy. Based on studies of Galactic nova shells43 we assumed a bi-axial 

geometry (either prolate or oblate). We used the projected semi-major and semi-minor 

axes of 67 and 45pc, respectively, a shell thickness of 22%, and the [S II] electron density 

upper limit of 100cm-3. We note that the measured shell thickness ratio is invariant to 

projection effects. We derive shell mass upper limits of 7´105Msun and 106Msun for 

prolate and oblate geometries, respectively. We also note that the [S II] doublet is not a 

sensitive probe of densities below 100cm-3(23). 

Using the HST continuum-subtracted Ha+[N II] image (Fig. 1b) we computed the 

integrated Ha+[N II] flux from the super-remnant to be 7´10-17 W m-2. When accounting 

for the distance to M31 of 770±19 kpc44, we find that the total Ha+[N II] luminosity 

alone from the super-remnant is 1,300±200 Lsun (bolometric). 

In Fig. 1 we show that 12a is offset from the geometric centre of the super-remnant by 

13pc. The geometric centre was determined by the best-fitting ellipse to the optical 

imaging (see Fig. 1a). To attain such a displacement over 6´106 years a transverse 

velocity of 2.1km/s is required. All the spectra of 12a in eruption show no evidence for a 

significant (³100km/s) radial component to the system velocity11,13,16,19,31. 



6. Hydrodynamic modelling 

The hydrodynamic simulations were performed with the Morpheus program, an MPI-

OpenMP Eulerian second-order Godunov simulation code with options of Cartesian, 

spherical and cylindrical coordinates which includes radiative cooling and gravity. 

Morpheus combines well-established 1D (Asphere45), 2D (Novarot46) and 3D 

(CubeMPI47) codes written by the Manchester-LJMU astrophysics groups into a single 

framework. For the purposes of these simulations we assumed one-dimensional spherical 

symmetry. 

Based on observations of 12a and theoretical modelling of the eruptions11,14,15,19, we 

assumed the following model for the system: The mass donor is a red giant with a wind 

mass loss rate (after any accretion on to the WD) of 2.6´10-8Msun/year, the terminal 

velocity of the red giant wind is 20km/s (cf. RS Ophiuchi48), and this wind blows 

continuously, except during the eruption period. The mass loss from the WD, via nova 

eruptions, is modelled as a wind with a constant mass-loss rate and velocity which has a 

simple top-hat function ‘on’ for 7 consecutive days in every 350 days (the nova 

recurrence period). The total mass ejected by each nova eruption is 5´10-8Msun, the 

ejecta have a terminal velocity of 3,000km/s. By injecting mass with terminal velocity, 

we can neglect gravity. As the spatial resolution of the larger simulations is smaller than 

the expected orbital separation, both the donor star and the WD are assumed to be 

spatially coincident at the origin and there is assumed to be no interaction between the 

ejecta and the donor or the accretion disk. Mass injection via a wind or nova ejecta is 

effected by means of a boundary condition at the inner boundary of the simulation grid. 

The energy of the injected mass is dominated by kinetic energy. The grid is uniformly 



spaced and the maximum domain size is predetermined to contain the outer edge of the 

super-remnant. All simulations have sufficient spatial resolution to resolve and follow 

each separate eruption until they merge in the pile-up region. For computational 

efficiency, the domain is actively resized as the super-remnant grows by the addition of 

new cells. 

Simulations were conducted as follows: An initial run, following 20 eruptions, with a 

spatial resolution of 0.02AU per cell and maximum domain size 1017cm (6,667AU) was 

conducted to ‘bench-mark’ the lower-resolution simulations. This was followed by a 

simulation of 100 eruptions with 0.2AU/cell and maximum domain 3´1017cm, 1,000 

eruptions at 0.4AU/cell and maximum domain 1.2´1018cm, 10,000 eruptions with a 

resolution of 1AU/cell and maximum domain 4.4´1018cm (1.43pc), and finally, 100,000 

eruptions with 4AU/cell resolution and domain size 1.8´1019cm (5.8pc). All of these 

simulations prepopulated the domain with a low pressure, cold (90K), uniform ISM 

density of 1 hydrogen atom per cm3, and did not invoke radiative cooling. Prepopulating 

the domain with a red giant wind did not make any significant differences after ~10 

eruptions. Extended Data Fig. 3 illustrates the consistency between the models at all 

resolutions, particularly within the outer dense shell of the super-remnant. 

Simulations of 100 eruptions were also conducted, as above, to explore the effect of 

different ISM densities on the super-remnant. This effect is shown in Fig. 3d. As any 

energy lost due to radiative cooling can affect the dynamics of a system, a simulation of 

1,000 eruptions, again as above, was also conducted while utilising the radiative cooling 

module of Morpheus with a suitable cooling curve45. The results of this simulation are 

presented in Extended Data Fig. 4 and are compared to the uncooled version. Again, 



although the details of the freely expanding nova ejecta are slightly altered, the gross-

structure of the super-remnant shell is consistent. We also note that radiative cooling is 

inefficient above 106.5K and for low densities, which is the case for all the material in the 

remnant shell and the ejecta pile-up regions. Therefore, for computational ease, we 

moved on to simulate greater numbers of ejecta while ignoring radiative cooling effects. 

Fig. 3f shows that eventually the super-remnant shell will cool sufficiently that radiative 

cooling may be important, however, the efficiency of such cooling also depends on the 

square of the density, as the shell cools further, below 104K cooling becomes inefficient 

once more, so we do not expect cooling to greatly affect the results at later times. As the 

addition of the Morpheus radiative cooling module had negligible effect on the results of 

the simulations, we can conclude that radiative losses must be minimal and do not affect 

the dynamics of the system. 

The remnant mass (Extended Data Fig. 5a) was computed by integrating over the super-

remnant shell, defined as the outer region whose density is above that of the ISM (see 

Fig. 3a-c). Extrapolation of the simulations to greater time-scales was performed by 

fitting the super-remnant growth curves, as shown in Fig. 3d and Extended Data Fig. 5a, 

with power-laws.  

The predicted radial profile of the simulated super-remnant (Fig. 3e) was produced by 

integrating the computed density profile over a sphere and then generating a collapsed 

two-dimensional image. The resultant image was smoothed to match the point-spread 

function (PSF) of HST and photometry was performed on this image in-line with the 

radial profiles of the LT and HST data. Simulation data have been truncated at 10pc to 

remove the effect of subsequently smoothed eruptions of 12a. We note the agreement 



between this simulated profile of a shell-like nebula and the radial profiles from the LT 

and HST data.  

These simulations using perfectly periodic eruptions of 12a lead to the production of an 

extremely smooth super-remnant outer-shell and ejecta-pile up region (see Fig. 3c and 

Extended Data Fig. 6 in particular), which is potentially at odds with the HST 

observations (Fig. 1c). However, over the past decade, the inter-eruption time of 12a has 

varied by ±52 days(13). As such, we performed an additional simulation of 1,000 eruptions 

with a Gaussian distribution of onset times, with mean 350 days and sigma 52 days. The 

gross results of this simulation are entirely consistent with those of the periodic models. 

However, non-periodic eruptions alone produce potentially observable substructure 

within the outer-shell of the super-remnant. 

7. Photoionization analysis 

A ‘fossil H II’ region refers to a region of the ISM which is ionized by photoionization 

from a nearby source, typically O-B stars or by the flash emission from a supernova49. 

Having already excluded a supernova origin for the super-remnant, we must explore 

whether the ‘lighthouse-effect’ pulse of ionising radiation from the recurrent eruptions of 

12a could have grown a fossil region as large as the super-remnant.  

Perhaps the simplest form of a photoionization region is that of a static ‘Strömgren’ 

sphere. For this analysis, we will assume that the density and temperature limits for the 

ISM around the nova (n<50cm-3 and T<9,000K), determined for the outer-shell, apply but 

we will also impose a density limit of n>1cm-3. We note that the equivalent mid-disk 

region of the Milky Way has an electron density of ~20cm-3(50). In addition, we assume 

that the nova emits a spectrum of solely 15eV photons for two weeks each year (the 



timescale of each eruption; and an overestimate of the number of ionising photons 

produced) and that Case B recombination applies. Under these restrictions, to grow a 

Strömgren sphere to a radius of 67pc would require a nova bolometric luminosity 

>1.3´106Lsun (assuming that all radiation blueward of the Lyman limit was tasked solely 

with ionizing the ISM) – at least an order of magnitude higher than actually observed13. If 

such a fossil were still to be growing then the energy output required for each nova 

eruption must be even larger. 

Another possibility could be a photoionization ‘echo’ from each of the nova flashes. Such 

a phenomenon is similar to a light echo, but is delayed by the recombination timescales 

of the surrounding material. A photoionization echo propagating through an inclined 

plane of material has been proposed to describe an apparent ring surrounding the site of 

SN 1987A51,52. For reasonable assumptions of the local ISM density (50cm-3), a lower 

limit on the recombination timescale is ~2000 years. Any given echo (light or 

photoionization) would typically produce a superluminally expanding ring, that fades 

with time as the observed radius increases. However, once we have multiple flashes, and 

in the photoionization case flashes that occur more frequently than the recombination 

timescale, the picture is different. The echo emission must always be dominated by more 

recent flashes. Continual flashes will instead present a limb-darkened disk of emission, 

not a ring. 

8. Dynamics of the remnant 

We can utilise the ground-based imaging of the super-remnant to also place constraints 

on the growth rate of the super-remnant. Between the BOK and LT Ha imaging there is a 

baseline of 8.5±0.6yr. Over this baseline there is no significant change in the nebula, we 



can constrain the growth of the outer edge of the remnant to <6.4mas/yr (<0.02pc/yr; 

<0.08c; 23´103km/s) [upper limit of shift 54.6mas, 1/5 pixel]. If we also utilise Ha 

imaging from the Local Group Galaxies Survey (LGGS53) that we can extend this 

baseline to 14.1±0.4yr, which yields (<0.01pc/yr; <0.05c; 14x103km/s). Therefore, 

assuming no deceleration of an expanding front, these very loose velocity limits show 

that the remnant must have existed for at least a millennium. 

By comparison of the line centres of the Ha, [N II], and [S II] lines in the GTC spectra of 

the outer-shell (to the west) and the bright knot (to the east) we find no differential radial 

velocity down to a five-sigma upper limit of 36km/s. But we note that, depending upon 

the geometry of the super-remnant, the bulk motion at these positions might be expected 

to be constrained to the plane of the sky. The simulations indicate that the outer edge of 

the super-remnant has a power-law deceleration (Extended Data Fig. 5b), v µ t-0.4; the 

predicted present expansion velocity of the super-remnant is 5km/s. 

9. Super-remnant X-ray luminosity 

To compute the present-day X-ray luminosity of the super-remnant we again employed 

the hydrodynamic simulations to compute a time-series of synthetic X-ray spectra, 

following the procedure given in (refs 54 and 55). The cells of the simulation were 

grouped into 30 logarithmically distributed temperature bins between 104 and 109K (see 

Extended Data Fig. 7, top). The contribution from each bin was determined by its 

emission measure. The resulting 30 temperature component plasma was used as an input 

to XSPEC (v12.10.0c) which computed the X-ray spectrum using the MEKAL model. 

We assumed that the material had Solar composition and the spectrum included effects of 

emission from C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Fe, and Ni, and free-free, free-



bound, and two-electron emission processes. Synthetic X-ray spectra, covering 

0.3-10keV, were produced for all time-steps in the 100,000-eruption model (see Extended 

Data Fig. 7, bottom), and the evolution of the predicted X-ray luminosity is shown in 

Extended Data Fig. 5c. 

This emission modelling shows that at all times, the majority of the super-remnant 

emission arises from the super-remnant outer-shell – the piled-up ISM. Other regions of 

the structure are far too low density (and the ejecta pile-up region too hot) to contribute 

significantly to the emission. Again, this supports the finding of negligible radiative 

cooling from the multiple ejecta, and that radiation losses do not affect the dynamics of 

the super-remnant. 

The evolution of the emission measure (Extended Data Fig. 7, top) indicates that the 

luminosity of the super-remnant grows with time. However, the X-ray luminosity peaks 

at ~1,000 eruptions as the peak of the emission measure distribution continually shifts to 

longer wavelengths with time. As is illustrated in Extended Data Fig. 5c, the initial peak 

emission occurs in the hard X-ray (1-10keV), before shifting to softer X-rays. The post 

~1,000 eruption X-ray decline is simply due to the peak emission moving into, first, the 

extreme UV (10-124eV; 10,000 eruptions), then the UV (100,000 eruptions). By simple 

logarithmic extrapolation, the expected current emission peak will be in the infrared 

regime (around 12-13µm) – a potential target for follow-up observations by the James 

Webb Space Telescope. 

The X-ray luminosity of the super-remnant peaks after approximately 1,000 eruptions at 

~6´1031 erg s-1, before fading to 9´1029 erg s-1 after 100,000 eruptions. Using a power-

law extrapolation, the expected present-day X-ray luminosity is 3´1029 erg s-1. At all 



times (see below), the X-ray luminosity of the super-remnant lies well below current 

detection capabilities. 

10. Archival X-ray observations 

To constrain the X-ray emission of the proposed nova super-remnant, we examined the 

available archival X-ray data for the two most sensitive (and relevant) telescopes XMM-

Newton and Chandra. In case of Chandra, there are only three archival observations that 

contain the nova position, but at the very edge of their fields of view: ObsId 17012 (50ks 

nominal exposure), 17013 (45ks) and 17637 (10ks). In all three, the super-remnant is 

located (a) partly off the edge of the detector and (b) so far off-axis that we are not able to 

benefit from the superior (on-axis) spatial resolution of Chandra. Therefore, those data 

are significantly less useful for our objective than the XMM-Newton observations and we 

do not consider them in the following analysis. 

In case of XMM-Newton, there exist four archival observations with a total of 211ks 

effective exposure; i.e. after considering dead-time and exposure mask vignetting. Due to 

the superior collecting area of XMM-Newton this exposure results in significantly more 

photons than Chandra would have collected in the same time. The observations were 

taken in the following years (with ObsIDs in parentheses): 2002 (0109270301), 2007 

(0402561501), 2015 (0763120301), and 2016 (0763120401). The 2002 and 2007 

observations were employed to produce one of the X-ray catalogues used to rule out a 

SNR origin for the super-remnant25. The inclusion of the 2015 and 2016 X-ray data 

results in more than a tripling of the effective exposure time. 

After conducting substantial testing, we decided to use an elliptical source count 

extraction region, rather than an annulus, to study the super-remnant emission. The main 



reason for this is the relatively large XMM-Newton PSF, which, at the relatively small 

size of the super-remnant, would not give us an annulus shape for a detectable source. 

Fortunately, there are no known X-ray (point) sources near 12a in quiescence. Note that 

with an estimated quiescent X-ray luminosity of 102.5 Lsun(56), 12a is yet to be detected in 

X-rays outside eruptions. We only use the EPIC pn detector due to its higher response at 

lower energies. 

Combining all XMM-Newton observations we detect no significant X-ray emission from 

the nova super-remnant. We derive a count rate upper limit of 6.74´10-4 ct/s on the 3s 

confidence level, using a Bayesian approach57. Assuming a simple 1keV plasma with 

Solar abundance and foreground absorption, as expected from a young SNR, this rate 

corresponds to an unabsorbed luminosity of <9´1034 erg s-1 at the M31 distance of 

770kpc. This limit is five orders of magnitude greater than the expected present-day X-

ray luminosity of the super-remnant. 
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Extended Data Figure Legends 

Extended Data Figure 1. Additional mutli-wavelength imaging of the super-remnant 

region. (a), the Steward 2.3m Bok Telescope Ha image that allowed the association 

between the nebulosity and M31N 2008-12a to be made. Image orientation is as Fig. 1 

but the image is 80¢¢´80¢¢. (b-d), Hubble Space Telescope Wide Field Camera 3 broad-



band filter images of the region around M31N 2008-12a. Image sizes are 40¢¢´40¢¢. These 

three panels show the (b) F275W (ultraviolet), (c) F475W (optical), and (d) F814W 

(optical) filters. The white contours in the (b) show iso-flux regions as derived from the 

ground-based Ha+[N II] image. As (b-d) were taken toward the end of the 2015 

eruption, the nova can be seen in the images. The F275W image clearly illustrates the 

lack of bright UV sources within the super-remnant. 

Extended Data Figure 2. Hobby Eberly Telescope flux calibrated spectrum of the 

super-remnant outer-shell. As with the GTC spectrum of the same region (Fig. 2), there 

is negligible continuum and hydrogen Balmer emission lines and nebular lines of [N II], 

[O II], and [S II]. The mean spectral resolution of the “UV” and “orange” arms are 1.68 

and 4.04Å, respectively. Gaps in the spectrum indicate areas where significant skyline 

subtraction residuals remained. 

Extended Data Figure 3. Comparison of the results from the hydrodynamic 

modelling using a range of spatial resolutions. The blue and green lines indicate 

simulations of 20 eruptions with spatial resolutions of 0.02 and 0.2AU, respectively, 

while the red and black lines indicate simulations of 100 eruptions with resolution 0.2 

and 0.4 AU, respectively. (a) Gas density radial distribution, the lower black dotted 

horizontal line indicates the ISM density, with the upper dotted line showing the 

consistent peak density of the super-remnant shell. (b) Gas pressure radial distribution. 

(c) Gas velocity radial distribution. (d) Gas temperature radial distribution. 

Extended Data Figure 4. The effect of radiative cooling on the super-remnant 

dynamics. Panels as Extended Data Fig. 3. The close comparison between the results of 

simulations of 1,000 eruptions without radiative cooling (black) and with radiative 



cooling (blue).  

Extended Data Figure 5. Additional results of the hydrodynamic simulations of the 

interacting ejecta of multiple recurrent nova eruptions. (a), the mass growth of the 

super-remnant outer-shell for up to 100,000 eruptions (see key). The diagonal dotted line 

illustrates a power-law extrapolation of the outer-shell mass to further eruptions. The 

upper/lower solid grey lines indicate the growth of the outer-shell mass for higher/lower 

ISM densities, respectively. The horizontal line marks the predicted outer-shell mass at 

the current extent of the super-remnant. (b), the evolution of the expansion velocity of the 

outer shell (black) compared to the mean velocity within the ejecta pile-up region (red). 

The diagonal dotted lines indicate power-law extrapolations, the horizontal line the initial 

injection velocity, the vertical line the predicted current epoch. (c), the evolution of the 

X-ray (0.3-10keV) luminosity of the super-remnant (black), the hard (1-10keV; red) and 

soft (0.3-1keV; blue) components are shown for information along with the hardness 

ratio (hard/soft; right-hand axis) evolution; for each, the dotted line indicates a power-law 

extrapolation to later times. The horizontal dotted black line indicates the 3s upper limit 

from the XMM-Newton observations. 

Extended Data Figure 6. The full (uncooled) simulations of 100,000 eruptions. Panels 

as Extended Data Fig. 4.  

Extended Data Figure 7. Super-remnant X-ray emission modelling. In both panels 

the cyan, blue, green, red, and black lines indicate simulations of 10, 100, 1,000, 10,000, 

and 100,000 eruptions, respectively. Top: Contribution to the super-remnant emission as 

a function of temperature (in units of kT). The vertical dotted line indicates the lower-



limit (0.08keV) cut-off for input into XSPEC. Bottom: The resultant synthetic X-ray 

spectra of the super-remnant (0.3-10keV). 
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