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Abstract—This research concerns the detection of unauthorised 

access within hospital networks through the real-time analysis 

of audit logs. Privacy is a primary concern amongst patients 

due to the rising adoption of Electronic Patient Record (EPR) 

systems. There is growing evidence to suggest that patients 

may withhold information from healthcare providers due to 

lack of Trust in the security of EPRs. Yet, patient record data 

must be available to healthcare providers at the point of care. 

Ensuring privacy and confidentiality of that data is 

challenging. Roles within healthcare organisations are dynamic 

and relying on access control is not sufficient. Through 

proactive monitoring of audit logs, unauthorised accesses can 

be detected and presented to an analyst for review. Advanced 

data analytics and visualisation techniques can be used to aid 

the analysis of big data within EPR audit logs to identify and 

highlight pertinent data points. Employing a human-in-the-

loop model ensures that suspicious activity is appropriately 

investigated and the data analytics is continuously improving. 

This paper presents a system that employs a Human-in-the-

Loop Machine Learning (HILML) algorithm, in addition to a 

density-based local outlier detection model. The system is able 

to detect 145 anomalous behaviours in an unlabelled dataset of 

1,007,727 audit logs. This equates to 0.014% of the EPR 

accesses being labelled as anomalous in a specialist Liverpool 

(UK) hospital.  

Keywords-Electronic Patient Records; Healthcare 

Infrastructures; Information Security; Patient Privacy; 

Visualisation; Machine Learning. 

I.  INTRODUCTION 

Electronic Patient Record systems can support clinical 
operations within healthcare organisations [1] and improve 
the safety and efficiency [2] of healthcare delivery, whilst 
reducing costs [3]. The shift from paper-based to computer-
based patient records has improved the availability to patient 
data without limitations of time or place [4]. Additionally, 
availability is one of the three principles of information 
security. However, this shift in making health information 
accessible and useable by a range of health professionals 
conflicts with public perception of patient confidentiality and 
autonomy [5]. To ensure patient privacy in this landscape, 
there is a requirement for focus on the other two principles of 
information security, confidentiality and integrity [6]. A 
continued focus on trustworthy security and privacy 
mechanisms for health information sharing is necessary due 
to public concern regarding privacy of EPRs [7]. 

Patient data privacy, security and confidentiality 
concerns are validated through numerous reports of patient 
information being stolen, lost, misplaced, or released without 
authorisation [8]. Hacking and identity theft is often cited as 
a cause for concern regarding EPR security, alongside 
unauthorised access [9]. In particular, patients in the UK are 
often sceptical regarding the ability of the NHS to safeguard 
medical information and manage large technological 
projects, due to failed programs such as NPfIT (National 
Programme for IT) [10]. This view is particularly held 
amongst those who had worked in the NHS themselves [9]. 

The research presented in this paper demonstrates a 
system that utilises a HILML and density-based outlier 
detection model, in addition to an advanced visualisation 
approach, to ensure patient privacy within EPR systems. 
Density-based outlier detection can identify when a user’s 
behaviour has changed, by comparing behaviours, such as 
the type of actions being taken and the patients they are 
viewing. HILML models employ active learning techniques 
to leverage human expertise and iterate training of the 
machine learning model. In this way, potentially illegitimate 
access to patient records can be highlighted and investigated. 

The remainder of this paper is as follows. Section II 
presents background research on patient privacy and audit 
logs within EPR systems, in addition to a discussion of 
relevant machine learning and visualisation techniques. 
Section III outlines the methodology and systematic 
approach. Section IV discusses our results and a case study. 
Section V outlines the conclusions and the future work to be 
done.  

II. BACKGROUND 

There are 13 features required for security and privacy in 
EPRs [11]. These include system and application access 
control, compliance with security requirements, 
interoperability, integration and sharing, consent and choice 
mechanism, policies and regulation, applicability and 
scalability and cryptography techniques. Additionally there 
are 3 primary focuses of HIPAA (Health Insurance 
Portability and Accountability Act of 1996) regulations for 
attaining security in an EPR [12]. 1) Provide sufficiently 
anonymous release of information for research purposes. 2) 
Provide appropriate controls to prevent unauthorised people 
from gaining access to an organisations information systems 
and control of external communications links and access. 3) 



Provide mechanisms for controlled and user-differentiated 
access to individual patient records. 

Traditional methods for defining security policies within 
organisations are problematic within the context of 
healthcare organisations due to their reliance on the 
knowledge of domain experts, or observations of external 
specialists. Within healthcare the number of security policies 
are large, defined in an ad hoc manner and can be revised at 
a moment’s notice [13]. A primary feature of patients desire 
for widespread EPR adoption is transparency, with patients 
enquiring who has the ability to access their medical records, 
in addition to determining who has viewed them [14]. 

Patient Privacy concerns within EPRs is resulting in loss 
of trust of healthcare providers by patients [15]. This is 
evidenced by the following studies: 

 A 2015 study found that 78.9% of participants would 
worry about the security of their record if it was part of a 
national EPR system and 71.3% felt the NHS was 
unable to guarantee EPR safety [9].  

 A 2014 study found that 64.5% of patients expressed 
concerns regarding data breaches when personal health 
information was being transferred between healthcare 
professionals electronically [16]. 

 A 2012 study found that approximately 60% of 
respondents believed that the widespread adoption of 
EPR systems will lead to more personal information 
being lost or stolen [17]. 

Additionally, concerns about patient privacy can lead to 
patients being selective about the information they provide to 
healthcare providers, or offering incomplete or misleading 
information [15]. Withholding information due to privacy 
concerns among patients is evidenced in the following 
studies: 

 A 2014 study by the Office of the National Coordinator 
for Health Information Technology (ONC) found 7% of 
patients have withheld information from their healthcare 
provider due to privacy of security concerns, with this 
percentage increasing to 33% among those who strongly 
disagree that there are reasonable protections in place 
for EPRs [18]. 

 A 2014 study found that 12.3% of patients withhold 
information out of concern for a data breach, with the 
likelihood of withholding information higher among 
respondents who perceived they had little say regarding 
how their medical records were used [16]. 

 A 2011 study by FairWarning in Canada found that 
43.2% of patient’s withhold information based on 
privacy concerns, and 31.3% would postpone seeking 
care for a sensitive medical condition [18]. Additionally, 
61.9% reported that if there were serious or repeated 
breaches at a hospital where they had treatment it would 
reduce their confidence in the quality of healthcare at the 
hospital. 

A. Audit Logs 

Without audit mechanisms, EPR systems are vulnerable 
to undetected misuse, as users could modify or delete health 
information without their actions being traceable [19]. Audit 
Logs are usually recorded and stored for the purposes of 

access management [20]. However, they can also be used for 
the benefits of monitoring employee behaviour and system 
failures [21]. Audit Logs should have at least the following 
elements: 1) Time; 2) Date; 3) Information Accessed and 4) 
User ID. 

Thorough and frequent analysis of audit logs have been 
shown to discourage abuse [22]. Yet, this analysis often 
consists of manual audit log review. Motives for a breach of 
confidentiality within an EPR that may be detected through 
audit log analysis include: 1) Characteristics of the patient or 
patient record (such as a VIP). 2) A relationship between the 
user and the patient. 3) A relationship between the user and 
another person represented in the patient record (such as a 
spouse or child). 

Indicators of confidentiality breaches can also be 
separated into positive and negative indicators, where 
positive indicators are evidence of a potential breach and 
negative indicators are evidence of expected behaviour, 
typically based on the established provider role [22]. 
Probability scoring and an indicator weighting mechanism 
can aid in prioritising possible breaches for further 
investigation. 

B. Machine Learning 

There are three primary challenges facing information 
security that can be addressed through the use of machine 
learning 1) A lack of labelled data, 2) constantly evolving 
attacks and 3) limited investigative time and budget [23]. 

To address these problems, a solution should use 
analysts’ time effectively, detect new and evolving attacks in 
early stages, reduce response times between detection and 
prevention and have a low false positive rate [23]. 

Machine Learning workflows require iterative 
experimentation in order to attain a desired accuracy. 
Through analysis of an existing model, the workflow is 
modified to improve performance with a developer-in-the-
loop during the development cycle. Such iterations include  
adding/removing features, introducing new data sources, 
changing the machine learning model, adding ensemble 
averaging to the model and adding a HILML [24]. 

Ensemble and semi-supervised machine learning 
techniques involve the combination of both labelled and 
unlabelled data to change learning behaviour [25]. Through 
the application of active learning, outlier detection is 
improved. Due to the lack of labelled data for patient privacy 
violations within EPRs, semi-supervised learning has been 
applied for healthcare fraud detection [26].  

1) Ensemble Averaging 
Committee methods operate on the principal that 

combining the output of a group of machine learning 
algorithms can achieve a decision function superior to any 
individual output [27]. Ensemble averaging is a committee 
method in artificial neural networks that averages the output 
of a collection of outputs. Ensemble averaging concerns the 
following two properties of artificial neural networks [28]. 
Firstly, in a network, bias can be reduced at the cost of 
increased variance. Secondly, in a group of networks, the 
variance can be reduced at no bias cost. 



The ensemble average can be calculated through the 
following, where each expert is 𝑦𝑖, and the overall result �̃� 
can be defined as: 

�̃�(𝑥; 𝛼) =∑𝛼𝑗𝑦𝑗(𝑥)

𝑝

𝑗=1

 

(1) 
 For a given input, x, the output of the combined 

model, ỹ, is the weighted sum of the corresponding outputs 
of the component neural networks, yj, j = 1,⋯,p, and the αj's 
are the associated combination-weights [29]. 

2) Human-in-the-Loop 
A HILML model must be able to generalise across use-

cases and accept a declarative or semi-declarative 
specification [30]. Due to the declarative specification, a 
HILML system should capture a model of a Directed Acyclic 
Graph (DAG) of intermediate data items. Through a 
declarative specification, HILML can identify the logical 
operator for each node in the workflow, such as data 
preparation or model training [24]. 

The key advantages of a HILML model are as follows 
[23]: 1) Overcoming limited analyst bandwidth: An analyst 
can only feasibly examine less than 1% of the overall event 
volume. Therefore the use of outlier detection can present the 
most pertinent events for investigation. 2) Overcoming 
weaknesses of unsupervised learning: An events rarity, or 
status as an outlier, does not necessarily constitute 
maliciousness. Therefore an events score does not capture 
intent. Using a HILML model can include an analyst’s 
subjective assessment of malicious intent. 3) Actively adapts 
and synthesises new models: Analyst feedback provides 
labelled data regularly, creating a positive feedback loop. 
The more attacks the machine learning model detects, the 
more feedback it receives from an analyst, which then 
improves the accuracy of future predictions. 

III. METHODOLOGY 

Our previous work is able to detect 246 anomalous 
behaviours in an unlabelled dataset of 1,007,727 audit logs. 
This includes 10 users on the system (0.66%), 122 patient 
records (0.17%), 102 of routines (0.74%), and 12 devices 
(0.53%) [31]. This served to highlight specific user or patient 
IDs for further investigation. The system provides contextual 
awareness to detect anomalous behaviour within EPR audit 
activity. The contribution of this research, (the novelty is 
further outlined in [31] [32]) involves the use of ensemble 
averaging and a human-in-the-loop model. Our previous 
work used Local Outlier Factor (LOF)-based data analytics 
techniques, and visualisation to safeguard EPR data. The 
process identifies abnormal User IDs, Patient IDs, Device 
IDs and Routine IDs and highlighting them to an analyst. In 
this paper, we present a model of amalgamating LOF values 
into an ensemble averaged LOF value in order to identify 
individual audit logs for review. Through highlighting a 
specific audit log for review, the analyst can review the 
context around the EPR access and determine whether the 
access was appropriate or inappropriate. By including the 

HILML model, an active learning approach employs analyst 
feedback to train the machine learning model. 

A. Audit Log Ensemble Averaging 

Our previous work does not indicate exactly when a 
potential inappropriate access has occurred. In order to 
assign an anomaly score to a specific audit log, rather than a 
specific ID, the LOF anomaly scores need to calculate the 
ensemble average. In order to achieve this, a weighted 
average is applied to each audit log. An additional column is 
added next to each of the IDs with that IDs associated 
anomaly score. For every audit log, a weighted average of 
the four anomaly ID scores is calculated. The calculated 
ensemble average anomaly score can then be plotted against 
the Date & Time stamp and visualised to the analyst. 

IV. EXPERIMENT AND RESULTS 

A case study of actual EPR audit data is presented as an 
evaluation of the system methodology.  

A sample of EPR data is presented in Table I. This rich 
dataset contains 1,007,727 rows of audit logs of every user 
and their EPR activity in a single UK specialist hospital over 
a period of 18 months (28-02-16 – 21-08-17). 

TABLE I 

EPR AUDIT SAMPLE DATA 

Date & 

Time 
Device 

ID 

User 

ID 
Routine ID 

Patient 

ID 

Duration 

(sec) 

Adm 

Date 

Dis 

Date 

16/02/28 
00:00 

362 865 PHA.ORDS 58991 54 
28-

02-16 
29-

02-16 

16/02/28 
00:02 

923 199 
REC 
REC:(DRP) 
UK.OE 

17278 77 
15-

02-16 
15-

02-16 

16/02/28 
00:02 

103 677 ASF 4786 13 
22-

07-08 
22-

07-08 
16/02/28 

00:02 
103 677 ASF 4786 54 

22-
07-08 

22-
07-08 

16/02/28 
00:04 

923 199 PHA.ORDS 62121 147 
08-

02-16 
08-

02-16 

A large teaching hospital would have approximately 4 
times the number of staff and would therefore have a 
proportional increase in data quantity. The task of navigating 
this data for anomalous activity is therefore considerable. 

The dataset presented consists of the following fields. 1) 
Date & Time: The date/time the patient record was accessed; 
2) Device (Tokenised): The name of the device the patient 
record was accessed on; 3) User ID (Tokenised): A tokenised 
representation of the User who accessed the patient record; 
4) Routine ID: The routine performed whilst accessing the 
patient record (was the record updated, was a letter printed 
etc.); 5) Patient ID (Tokenised): A tokenised representation 
of the patient record that was accessed; 6) Duration: The 
number of seconds the patient record is accessed for (this 
number counts for as long as the record is on the screen, so 
may not always be an accurate reflection of how long the 
User was actively interacting with the data); 7) Latest Adm 
Date: The date the patient is last admitted to the hospital and 
8) Latest Dis Date: The date the patient is last discharged 
from the hospital. 

A. Anomaly Score Ensemble Averaging 

A sample of EPR data with a calculated ensemble 
average LOF anomaly score is presented in Table II. 

 



TABLE II 

EPR AUDIT DATA WITH ENSEMBLE AVERAGING APPLIED TO LOF ANOMALY SCORE 

Date & 

Time 
Device 

Device 

Anomaly 

Score 

User 

ID 

User 

Anomaly 

Score 

Routine ID 

Routine 

Anomaly 

Score 

Patient 

ID 

Patient 

Anomaly 

Score 

Duration 

(sec) 
Adm Date Dis Date 

Ensemble 

Averaging 

Anomaly 

Score 

16/09/26 

17:02 
1284 1.05 435 1.087 ASF SPC CAA MPI 13.339 71272 1.081 853 15/03/2016 15/03/2016 4.139 

16/11/25 

03:39 
102 1.084 1487 1.044 ASF SPC CAA MPI 13.339 29971 1.047 901 02/09/2015 02/09/2015 4.129 

16/08/15 

20:56 
531 1.161 358 1.052 *** UK.OE MPI PHA.ORDS 11.643 23637 1.066 1180 08/01/2016 08/01/2016 3.730 

16/11/21 

21:46 
369 1.088 1021 1.125 SPC SS ASF VH 11.350 41661 1.090 970 24/01/1997 24/01/1997 3.663 

17/08/09 

11:39 
1537 1.123 77 1.048 SPC SS ASF VH 11.350 57108 1.030 1041 30/12/2015 30/12/2015 3.638 

16/11/21 

17:38 
1052 1.094 809 1.087 

SS ZCUS.UK.LETTER 

ZCUS.UK.SCH MPI 
9.701 43065 1.054 723 29/12/1997 29/12/1997 3.234 

16/04/01 

01:12 
49 1.151 117 1.031 

SS ZCUS.UK.LETTER 

ZCUS.UK.SCH MPI 
9.701 52200 1.028 861 29/09/2015 29/09/2015 3.228 

16/12/19 

20:03 
293 1.067 992 1.090 

REC REC:(DRP) PHA.MEDS 

UK.OE 
9.538 41375 1.054 2454 28/11/2016 28/11/2016 3.187 

17/02/07 

00:18 
566 1.164 262 1.074 ZCUS.UK.LETTER 1.084 35888 9.414 1182 18/04/2013 18/04/2013 3.184 

16/12/27 

18:50 
293 1.067 992 1.087 ASF SPC CAA MPI 9.538 46862 1.020 1691 07/12/2016 07/12/2016 3.179 

The table is ordered by the highest LOF anomaly scores. 
Within the date range, the most notable audit log occurred on 
26

th
 Sep 2016 at 17:02. User #435 accessed Patient #71272 

on Device #1284 performing the following Routine 
combination ‘Assessment Forms Maternity Data Care-Area 
Administrative Data Admissions Demographic Data’, with 
an anomaly score of 4.14. There are 145 audit logs with an 
anomaly score above 2. Therefore LOF has indicated that 
0.014% of the EPR Audit Logs are anomalous.  

B. Visualisation of Results 

In Figure 1, a visualisation of the LOF results of 
calculated ensemble averaged anomaly scores is displayed 
for all 1,007,727 audit logs. The x-axis displays the date, and 
the y-axis displays the calculated ensemble average anomaly 
score. The LOF anomaly score measures the local deviation 
of density through determining how isolated the value given 
by k-nearest neighbours. A value of 1 indicates that an object 
is comparable to its neighbours and represents an inlier. A 
value below 1 indicates a dense region, and would therefore 
also be an inlier. A value significantly above 1 therefore 
indicates an outlier (anomaly). As all values within the range 
0-1 are classified as inliers, values within the range 1-2 were 
also classified as inliers. Any value above 2 was considered 
to indicate an outlier for the purposes of this experiment. 

The visualisation clearly displays the key logs of interest 
to be investigated by an Analyst. Hovering over a data point 
displays the date and time of the EPR access (in yy/mm/dd 
hh:mm format), in addition to its anomaly score. 

 

Figure 1 - Visualisation of LOF Results for Ensemble Averaged Anomaly Scores 

C. Discussion 

Our previous work used density based outlier techniques 
to identify IDs of interest to be investigated by an analyst. 
Highlighting an ID of interest, such as a user, is useful in 
some cases, where repeated inappropriate behaviour is 
evident. However, if the inappropriate behaviour occurred 
only once then an analyst would need to investigate the 
user’s entire behaviour for patterns, which is not feasible. 
Figure 1 uses ensemble averaging to identify specific audit 
logs of interest for an analyst. Highlighting a single audit log 
as an outlier instead allows an analyst to review it within the 
context of the other audit logs and determine intent. 
Additionally, an event being an outlier does not constitute 
maliciousness. Focusing attention to a single event of interest 
allows analyst intuition to be leveraged in determining 
context and intent. Therefore employing a HILML method 
overcomes the limitations of an unsupervised learning model 
and incorporates analyst feedback to adapt and use new 
models. In doing so, analyst attention can be focused to the 
most pertinent events within the dataset 

V. CONCLUSION AND FUTURE WORK 

Electronic Patient Record systems represent a 
fundamental shift for healthcare through increasing 
availability of healthcare data to providers. However, this 
ubiquity of data is causing privacy concerns among patients 
who feel there data is less secure electronically. Current 
rules-based models are insufficient and most information 
security incidents are detected by the patient, or staff 
member, whose privacy has been violated, causing 
reputational damage to the hospital. Therefore this paper 
represents research towards a system to ensure 
confidentiality and privacy of EPR systems. Through the use 
of machine learning techniques which employ a human-in-
the-loop and density-based outlier detection techniques, 
proactive monitoring of EPR audit logs is achieved. 
Proactive monitoring allows for inappropriate behaviour to 
be detected and managed, in addition to prompting a cultural 
shift among employees to refrain from such behaviour in 
future. 

Future Work will involve gathering feedback and testing 
the system with information security analysts in a hospital. 
This will validate the concept on real world non-anonymised 



data. Using non-anonymised data will allow for other factors 
to be taken into consideration to determine motivational 
indicators. Determining a user’s role may provide valuable 
insight. Admin staff and doctors may both have access to the 
EPR. If an admin staff member is accessing clinical data, this 
would achieve a higher anomaly score than a doctor, and 
may indicate a breach. Additionally a patient’s 
characteristics, such as a VIP or a relation to the patient, may 
provide context to determine whether a patient’s 
confidentiality has been breached. Accounting for additional 
factors such as these will continuously improve the system. 
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