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BEHAVIOURAL CLASSIFICATION FOR ENHANCING 

CRITICAL INFRASTRUCTURE SECURITY 
 
 
 
 
 
 
 
 
 
 

Abstract — Protecting critical infrastructures from cyber-threats 
in an increasingly digital age is a matter of growing urgency for 
governments and private industries across the globe. In a climate 
where cyber-security is an uncertainty, fresh and adaptive solutions 
to existing computer security approaches are a must. In this paper, 
we present our approach to supporting critical infrastructure security. 
The use of our critical infrastructure simulation, developed using 
Siemens Tecnomatix Plant Simulator and the programming language 
SimTalk, is used to construct realistic data from a simulated nuclear 
power plant. The data collected from the simulation, when both 
functioning as normal and during a cyber-attack scenario, is done 
through the use of an observer pattern. By extracting features from 
the data collected, threats to the system are identified by modelling 
system behaviour and identifying changes in patterns of activity by 
using three data classification techniques. 

 

Index Terms— Critical Infrastructure, Cyber-Attack, Data 
Classification, Behavioural Observation, Simulation, Tecnomatix 

1.  INTRODUCTION 

The emergence of the new level of sophistication of cyber-
attacks has given critical infrastructure security an increasing 
focus, in governments, industry and the media around the 
globe [5]. Protecting critical infrastructures against cyber-
threats is becoming a matter of urgency. 

Intrusion detection systems (IDS) [6] and unified threat 
management systems (UTM) [7] both have the role of 
ensuring critical infrastructures are kept safe. The problem is, 
both of these approaches are struggling to keep up-to pace 
with the growing level of complexity cyber-attacks now 
possess. 

Consequently, we present a continuation of our research 
into the use of behavioural observation for the support of 
critical infrastructure security against this growing cyber-
threat [1, 2, 3, 4]. 

In this paper, we present, initially, our simulation of a 
nuclear power plant using Siemens Tecnomatix Plant 
Simulator and SimTalk. Simulation has a key role in the 
advancement of critical infrastructure protection. Its use is 
becoming a common technique for the testing of cyber-attack 

prevention measures and for developing improved security 
techniques [9, 11]. A simple system can be created to 
represent a larger infrastructure and allow for realistic testing 
to take place [12]. Simulation can provide an effective role in 
testing the capabilities infrastructures have in facing the 
growing cyber-threat. Using emulators can provide an 
effective ways of developing new approaches to secure critical 
infrastructures [9]. 

Using our simulation, we construct realistic data, both 
when operating under normal circumstances and during an 
attack scenario. We collect the data from the simulation using 
observers and then extract features which can be used to 
classify the data. Using this data, a pattern of behaviour is 
formed to act as an inference model. From this model, we are 
subsequently able to identify attacks on the system using 
mathematical classification techniques and computational 
algorithms, to identify changes in activity. 

The remainder of the paper is as follows. Section 2 presents 
our approach for the use of behavioural observation for 
supporting critical infrastructure security. Section 3 details the 
development of our power plant simulation and data 
construction. Section 4 details the data analysis and Section 5 
discusses its classification. An evaluation of the results is 
discussed in Section 6. The paper is concluded in Section 7. 

2.  SYSTEM APPROACH 

Given their highly sensitive nature, organisations are often 
unwilling to part with data or detailed information about how 
their systems function. This poses difficulties for independent 
researchers and security companies to find an effective way of 
developing new approaches to securing critical infrastructures. 
Furthermore, not only is effective security costly, the 
requirements individual critical infrastructures have are often 
unique meaning their security systems have to be tailored to 
match their specific needs. As a result of these factors, 
simulation can play a key role in the advancement of security 
measures in a cheap, safe and effective way. 

The recognition that simulation is the best approach to 
preventing cyber-attacks and improving responses is clearly 
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identified as the best way forward by governments and 
organisations around the globe [9]. Using simulation is 
beneficial in that it can be an effective tool for implementing 
new approaches to security in a realistic environment. It can 
also provide an insight into how effective a new approach to 
security would be and provide proof of applicability and 
performance evaluation. 

In our research to date, we have explored the use of 
behavioural observation for critical infrastructure security 
support [1, 2, 3, 4,]. However, in order do this; a significant 
amount of data is required. For that reason, a simulated critical 
infrastructure is essential to provide the data needed for 
testing and to develop our system. In this section, an overview 
of the approach for using behaviour observation to support 
security is presented. Our approach monitors the operations of 
an infrastructure and identifies any abnormalities, which occur 
in its operation, as a result of, an attack on the system.  

Patterns of behaviour are monitored, in real-time, and 
through the use of data classification, threats to the system, 
caused by changes in the patterns, are identified. 

 

Fig. 1. System Design 

Our approach involves two stages. The first stage is the 
development of a database of normal behaviour for the system. 
Using observers to collect data from various components in 
the system when it is functioning normally, a database of 
expected system behaviour is constructed. The collected data 
then has features extracted from it. The features are 

abstractions of the data [8]. Using the features, patterns of data 
are created using data classification. 

Stage two is the comparing of real-time behaviour with a 
database of known patterns of correct behaviour in order to 
identify changes in behaviour as a result of anomalous activity. 
Figure 1 displays this approach. In both cases, data is 
collected from the components using observers. The use of 
observers prevents the operator or an analysis engine from 
being overwhelmed with data because data is filtered and 
customised by the observer. The observers extract the features 
from the data. (The features which are extracted are discussed 
in Section 3). 

3. DATA CONSTRUCTION 

As critical infrastructure data is highly sensitive, it is clear that 
simulation can provide realistic data without being restricted 
by security constraints. For the purposes of our research, a 
large data set of realistic critical infrastructure behaviour is 
created. In order to construct the data, a simulation of a 
nuclear power plant is crucial. This section presents the 
development of a simulation of a nuclear power plant and its 
use for data construction. Attacking a nuclear power plant is 
the doorway to causing a huge impact. For that reason, we felt 
that developing a simulation environment representation of a 
nuclear power plant would be ideal. 

All other critical infrastructures depend on power plants 
functioning and, given their clear importance, realistic data is 
sensitive and hard to come by. Not only that, the impact of an 
orchestrated attack on a nuclear power plant could have 
serious consequences due to the nuclear element involved [10]. 
A successful attack could not only affect the population but 
also the environment. Nuclear power plants are prime targets 
for cyber-attacks [10]. 

3.1 Simulation 

The simulation design consists of an external water source, 
two water storage tanks, two pumps, a nuclear reactor and a 
steam generator. Pipes are also included, which carry the 
water and steam to and from the water tanks and reactor. The 
design is based on a nuclear power plant which would contain 
each of the components in the design. 

 

Fig. 2. Simulated Power Plant 
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Figure 2 displays an overview of the whole system. It can 
be broken down into four main groups of objects. The groups 
include: 

1. A Water Source: The production of water is supplied 
by three sources. Two infinite sources, representing a 
lake or ocean, and one water tower. The water 
introduced into this simulation requires filtering before 
it can be sent to the water tanks. The generation of 
impurities in the water was set to 1% meaning that the 
level of discrepancies remained small but had to be 
monitored. The water tower has a limited production 
source of water, which can only supply for the duration 
of 10 hours. 1 unit of water represents 1 litre in our 
system. The water supplied is fed into one large pipe, 
which is then filtered for impurities before being 
pumped into the Water Tanks. 

2. Two Water Tanks: These consist of two storage tanks, 
with a pipe to and from each tank. The tanks act as a 
place for the water to collect and effectively act as a 
way of controlling the water flow to the reactor. The 
water distribution is controlled by a Flow Control 
which gives tank 1 priority over tank 2. This, in effect, 
makes tank 2 act as an overflow for when tank 1 gets 
too full. The water is then pumped to the Reactor by 
two pumps, one for each tank. 

3. A Reactor: This combines the intake of water with heat 
from a nuclear reaction to produce steam and feed it to 
a generator. A source generates the Nuclear Reaction. 
It is combined with the units of water in an assembly 
station to produce heat. In a nuclear power plant the 
water acts as a coolant for the reactor, some water is 
therefore, recaptured as it is not turned into steam. 

4. A Generator: It consists of two steam pipes into which 
the reactor feeds steam and a turbine which is turned 
by the steam entering the system. Each unit of steam 
turns the generator once. 

Fig. 3. System Functioning 

Each of the groupings are given a graphical icon to 
represent its function more clearly. They can be opened up to 
show the different objects which allow the system to function 
and be interconnected. The simulated power plant consists of 

80 components in total, including connections and interfaces, 
as figure 2 displays.  

When linked together, the system functions, as shown in 
Figure 3. The individual blue blocks represent a visualisation 
of material flow. In this case, they are units of water travelling 
through a network of pipes in the system. Exiting the 
generator, units of energy are passed to the output and the 
energy unit output is monitored. 

The flow of material can be demonstrated in a Sankey 
Diagram of system flow which is a way of visualising the 
flow of the system. In the case of our simulation, the Sankey 
diagram shows the flow of water, steam and energy 
throughout the system. The flow is represented by the 
thickness of the lines in the diagram in figure 4. The thicker 
the line, the more traffic passes through the connection. 

 

Fig. 4. Sankey Diagram of Material Flow 

As Figure 4 displays, the heaviest traffic can be seen on the 
pipes heading into the reactor and the energy output pipe. 

3.2 Behaviour Analysis 

The behaviour of the system can be analysed at any time, 
but for the purposes of our research, observers were inserted 
to collect data from specified components. Taking pipe4 as an 
example, an inserted TimeSequence acts as an observer, and it 
records the values for the number of units of water passing 
through pipe4. Active sampling was done every 0.25 seconds. 
4 Hz. From these components we extracted features. 

The features we use comprise of aspects which identify the 
system and regular occurrences in system behaviour. Overall 
water volumes, steam output and energy creation are recorded 
as features. In total we take 9 features from the system as a 
whole including the mean, max and min values every hour for: 

1. Water in system 

2. Steam in system 

3. Energy or Reaction in system 

In addition to the 9 system features, 3 features from 10 
components in the system are recorded. The features collected 
from the components include aspects such as: 

1. Speed of flow 
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2. Mean level 

3. Number of times 0 recorded 

In this paper, we collect data from 10 components in the 
system, resulting in the creation of 39 features in total: 9 
system features and 30 component features. These features 
were chosen because they represent characteristics of the 
system behaviour. 

In order for our data classification to be effective both 
normal behaviour data and attack data is needed. Using our 
simulation attack data was constructed by implementing a 
failure to the steam pipes which would occur 50% of the time 
during runtime. This results in each steam pipe turning off and 
on during the simulation and causing a knock-on effect 
throughout the rest of the system, which will be highlighted in 
Section 4. 

Random failures are implementing an Availability 
Percentage. The Availability Percentage refers to the chances 
of a machine or components being ready to use at any given 
time taking into account failures and blockages, which is 
calculated using the formula: 

Availability = MTBF/(MTBF+MTTR) 
(1)	

Where MTTR is the Mean Time To Repair and MTBF is 
the Mean Time Between Failures. 

Due to the fact that power plant systems are designed to be 
enduring, the failure of key components such as the reactor, 
water pumps and Flow Controls, is ordinarily set at 0.1 per 
cent for the simulation, meaning that any naturally occurring 
failures in the system would be minimal. This was done to 
make the system behaves differently each time it runs and to 
account for minor system faults which occur in real-life 
critical infrastructures. 

4. DATA ANALYSIS 

The types of data the system can construct includes: 
performance data, material flow data, re-source allocation, and 
system load data.  

4.1 Observer for data collection 

The data the observers collect in our simulation refer to the 
units of water and is sampled at 4Hz (which is every 0.25 of a 
second). Therefore the dataset which is generated is extremely 
large after one simulated day and consists of 366,000 records 
of data for each component.  

Table 1 displays a sample of the flow of water, where the 
value refers to the number of units of water being processed 
by the component at a given time. For example, between the 
times 7:53.0 and 7:56.0, p4 the amount of units of water 
changes between 3 and 4. In the data sample displayed in table 
1, above 10 components are displayed in abbreviation format. 

In an industrial environment, real-time monitoring is 
essential. Large numbers of physical parameters, such as 
temperatures, pressure, speed and flow rate factors must be 

taken into account. Using observational services would allow 
for fast identification of anomalies by monitoring the system 
functions and recognising patterns of behaviour.  

Using this data we propose a behavioural-based observation 
system which supports security in critical infrastructures. The 
data constructed by the simulation is used for creating an 
inference model of system behaviour. In order to detect threats 
to the system, such as cyber-attacks, we identify changes in 
patterns of activity using data classification techniques 
presented in Section 5. 

 

Table 1 Normal Behaviour Data 

Each component is explained below: 

1. WTP (Water Tower Pipe): the WTP provides a fixed 
amount of water to the system every hour of the 
simulation. 

2. P1 (Pipe 1): P1 connects the first infinite water source 
to the water filter. 

3. P2 (Pipe 2): Similarly to P1, P2 connects the second 
infinite water source to the water filter. 

Point in Time WTP p1 p2 p3 p4 T1 T2 R SP1 SP2
07:53.0 7 11 10 0 4 35 35 0 5 5
07:53.2 7 11 11 0 4 35 35 0 5 5
07:53.5 7 11 11 0 3 35 35 0 5 5
07:53.7 7 10 11 0 4 35 35 0 5 5
07:54.0 7 10 11 0 4 35 35 0 5 5
07:54.2 7 11 11 0 3 35 35 1 5 5
07:54.5 6 11 11 0 4 35 35 0 5 5
07:54.7 6 11 11 0 4 35 35 0 5 5
07:55.0 6 11 11 0 4 35 35 1 5 5
07:55.3 6 11 10 0 4 35 36 1 5 5
07:55.5 6 11 10 0 4 35 35 0 5 5
07:55.7 6 11 11 0 4 35 35 1 5 5
07:56.0 6 11 11 0 3 35 35 1 5 5
07:56.2 6 10 11 0 4 35 35 1 5 5
07:56.5 6 11 11 0 4 35 35 1 5 5
07:56.7 6 11 11 0 3 35 36 1 5 5
07:57.0 5 11 11 0 4 36 35 1 5 5
07:57.2 5 11 11 0 4 36 35 1 5 5
07:57.5 5 11 11 0 3 36 35 1 5 5
07:57.7 5 11 10 0 4 35 36 1 5 5
07:58.0 5 11 10 0 4 35 36 1 5 5
07:58.2 5 11 11 0 3 35 36 1 5 5
07:58.5 5 10 11 0 4 36 36 1 5 5
07:58.7 5 10 11 0 4 36 35 1 5 5
07:59.0 5 11 11 0 4 36 35 1 5 5
07:59.2 4 11 11 0 4 36 36 1 5 5
07:59.5 4 11 11 0 4 36 36 1 5 5
07:59.7 4 11 11 0 4 35 36 1 5 5
08:00.0 4 11 11 0 3 35 36 1 5 5
08:00.2 4 11 10 0 4 36 36 1 5 5
08:00.5 4 11 11 0 4 36 36 1 5 5
08:00.7 4 11 11 0 3 36 35 1 5 5
08:01.0 4 10 11 0 4 36 36 1 5 5
08:01.2 4 11 11 0 4 36 36 1 5 5
08:01.5 4 11 11 0 3 36 36 1 5 5
08:01.7 3 11 11 0 4 36 36 0 5 5
08:02.0 3 11 11 0 4 36 36 0 5 5
08:02.2 3 11 11 0 3 36 36 0 5 5
08:02.5 3 11 10 0 4 36 37 0 5 5
08:02.7 3 11 10 0 4 36 36 0 5 5
08:03.0 3 11 11 0 4 36 36 0 5 5
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4. P3 (Pipe 3): P3 sends the filtered water impurities to 
the waste. 

5. P4 (Pipe 4): P4 connects the water sources to the water 
tanks. 

6. T1 (Water Tank 1): Water is divided evenly between 
both water storage tanks. However, T1 is the primary 
water tank for the system. Both tanks store the water 
which is supplied to the reactor core. 

7. T2 (Water Tank 2): The second water tank also stores 
water produced by the water sources. The level in both 
tanks regularly increases and decreases during 
simulation. 

8. R (Reactor): In the Reactor core, A source generates 
the Nuclear Reaction. It is combined with the units of 
water in an assembly station to produce heat. In a 
nuclear power plant the water acts as a coolant for the 
reactor, some water is therefore, recaptured as it is not 
turned into steam. 

9. SP1 (Steam Pipe 1): The reactor feeds steam and a 
turbine which is turned by the steam entering the 
system. Each unit of steam turns the generator once. 

10. SP2 (Steam Pipe 2): Steam Pipe 1 and 2 both have 
consistently even levels of steam passing through them 
to the generator. 

The data displayed in Table one refers only to the normal 
behaviour data, however, as previously mentioned, two data 
sets were created for both attack and normal behaviour.  

Using the features extracted from the two datasets for 
normal and attack behaviour, records are created. Records of 
data are used for training an algorithm to learn what normal 
behaviour is and subsequently identify when normal 
behaviour is not occurring. 48 records of data are created 
consisting of 39 features. 24 records used for normal 
behaviour and 24 for attack behaviour.  

The 24 records for each are created as the simulation is 
operated for a day and every hour the features are extracted 
from the data collection. 

4.2 Normal and Attack Behaviour  

The difference between normal behaviour and attack 
behaviour can be seen both in figures 5 and 6. Two 
components were chosen as a representation of the differences 
in data between attack and normal system behaviour. 

Normal behaviour is represented by the triangles and attack 
behaviour represented by the squares. The x-axis numbers the 
records of data taken from 1 to 24. The y-axis displays the 
mean value for the units of water in the component over an 
hour.  

Figure 5 displays the data constructed for pipe 4. The result 
of the attack on the steam pipe has an effect which can be 
clearly seen by the increase in the average value per hour. 

 

Fig. 5. Pipe4 Data Normal and Attack Behaviour 

Figure 6 displays the data constructed for pipe3. As before 
the triangles represent normal behaviour and the squares 
represent attack behaviour. The change in behaviour as a 
result of the attack can once again be seen but in the case of 
this component it is not as clear. The linear line for both 
normal and attack behaviour, however, shows a clear change 
once again in the average value.  

The aim of our research is to identify these variations in 
behaviour and alert an operator of subtle changes in patterns 
of activity which could constitute a threat to the system. Using 
this data classifiers are trained to automatically detect threats 
to the system. 

In both of the graphs displayed, figures 5 and 6, one feature 
from two different components is selected to show subtle 
comparisons with normal and attack behaviour. 

 

Fig. 6. Pipe3 Data Normal and Attack Behaviour 

The feature is the mean value of water in the component 
over the period of an hour. In the case of figure 5 the change 
in behaviour can be easily identified. However changes in 
behaviour as a result of an attack taking place can often be 
subtle and hard to identify, as shown by figure 6. For that 
reason, data classification is essential. 

5. DATA CLASSIFICATION 

The aim of our research is to identify these subtle variations 
in behaviour and alert an operator of changes in patterns of 
activity which could constitute a threat to the system. The data 
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is classified to automatically detect threats to the system. If 
analysed in real-time a change in the pattern of expected 
behaviour would result in an alarm being signalled and the 
operator being alerted to the change in activity. 

5.1 Data Classification Approach 

Using the database of features extracted from the 
simulation, data classification algorithms were applied to 
create a model of correct behaviour for the system and the 
identification of threats. Initially, this was done randomly, by 
dividing the data, using MATLAB, into a 50% training set 
with the rest of the 50% assigned to a test set. Using three 
different classifiers which are discussed below: 

 Firstly, Linear Discriminant Classifier (LDC) is 
implemented as it is a technique which can be used when 
two classes are not normally distributed [13]. It works by 
sorting or dividing data into groups based on characteristics 
in order to create a classification. A discriminant function is 
obtained by monotonic transformation of posterior 
probabilities. In other words, it performs an ordered 
transformation of unknown quantities. It does this using the 
formula: 

		݃௜ሺݔሻ ൌ logሾܲሺݓ௜ሻ݌ሺݓ|ݔ௜ሻሿ ,											݅ ൌ 1,… , ܿ 
(2) 

 Secondly, we chose a Quadratic Discriminant 
Classifier (QDC-Bayes Normal-2). This technique works 
by assuming that the classes are normally distributed with 
class specific covariance matrices, which is the changing of 
two random variables. Again, this is achieved using the 
formula below: 

g_(i ) (x)=w_i0+w_i^T x+x^T w_i x 
(3) 

 Thirdly, we used an Uncorrelated Normal Density 
based Classifier (UDC- Bayes Normal-U). UDC works in a 
similar way to the QDC classifier but computation of a 
quadratic classifier, between the classes in the dataset, is 
done by assuming normal densities with uncorrelated 
features. Quadric Bayes takes decisions by assuming 
different normal distribution of data. It leads to quadratic 
decision boundaries [14]. 

5.2 Observations 

Using the above data classifiers, the results of each initial 
experiment is displayed in figures 7 to 9 in order of successful 
data classification. 

Each figure displays a confusion matrix which determines 
the distribution of errors across all classes [15]. It displays 
how successful each technique was at classifying normal and 
threat behaviour.  

ܶܲ ൅ ܶܰ
ܶܲ ൅ ܲܨ ൅ ܶܰ ൅ ܰܨ

 

It shows true positive, false positive, true negative and false 
negative values. Diagonal elements show the performance of 
the classifier while off-diagonal presents errors. 

The first confusion matrix, in Figure 7, presents the results 
for UDC, which shows 95.8% correct results for initial object 
classification. 

 

Fig. 7 UDC Confusion Matrix 95.8% 

In contrast, LDC produces results, which are lower. It is 
83.3% successful in accurately classifying the data, into its 
correct groups. This is shown in the Confusion Matrix in 
Figure 8. 

 

Fig. 8. LDC Confusion Matrix 83.3% 

QDC again gives a lower percentage of 79.2 as shown in 
Figure 9). 

 

Fig. 9 QDC Confusion Matrix 79.2% 

The experiments show that abnormal behaviour is 
identified for improving the level of security and assisting the 
operator with attack detections. The best result is achieved 
using UDC, which has, in this case, 95.8% accurate 
classification of behaviour. 

6. EVALUATION 

In order to give a more accurate evaluation of which of the 
classifiers is most successful and consistent, the experiments 
were conducted 30 times. The reason the classification 
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experiments are conducted 30 times is to account for errors 
and to give consistency [16]. Statisticians identify that 
experiments conducted 30 times provide an adequate realistic 
average [16]. 

In this section, an evaluation of the classification 
algorithms used is presented along with a discussion on the 
results and how this approach will benefit critical 
infrastructure security. 

6.1 Results 

UDC scored best and is consistent throughout, with a mean 
average of 97.3 per cent accurate classification of system 
behaviour data overall. 

 

Fig 10 Graph of Classification Comparison 

Figure 10 displays a line graph of the varying results of the 
data classification for the 30 times the classifiers were applied 
to the data. 

 

Fig 11 Classification Mean Success Percentage 

The evaluation of the performance of the three classifiers 
can be seen in Figure 11, which displays the mean average 
score of each approach to behavioural anomaly detection. 

UDC performs consistently; however, LDC and QDC also 
achieve high results but have lower consistency. The highest 
result for each is 100 per cent, although the mode value for 
LDC (83.3 %), the value which occurs the most frequently, is 

significantly lower than it is for both QDC (95.8 %) and UDC 
(95.8%) analysis. In table 2 the results from each of the 30 
experiments for the three classifiers are displayed with the 
mean average for each presented. 

 

Table 2 Classification Comparisons 

6.2 Discussion 

In our previous work, the best result was achieved using 
LDC, which had 80% accurate classification of behaviour [4]. 
This is a percentage of correctly classified data that is lower 
than what could be ideal in a critical infrastructure security 
environment. In the case of critical infrastructures, it is 
important to achieve a high success rate. In this paper, the 
results were improved on by the use of more detailed and 
constructive feature extraction as well as a larger number of 
features extracted from the system. 

Our system will use all three classifiers and provide the 
operator with the ability to perform various analyses of the 
system to gain a more accurate insight into whether the system 
is under attack. Using and comparing three classifiers allows 

UDC LDC QDC

1 95.8 83.3 79.2

2 95.8 79.2 100

3 100 87.5 100

4 100 95.8 95.8

5 100 95.8 91.7

6 100 79.2 100

7 95.8 83.3 95.8

8 95.8 83.3 100

9 95.8 87.5 95.8

10 95.8 79.2 54.2

11 100 79.2 91.7

12 95.8 100 95.8

13 95.8 87.5 54.2

14 95.8 83.3 95.8

15 95.8 62.5 87.5

16 95.8 95.8 100

17 100 70.8 83.3

18 95.8 70.8 95.8

19 95.8 83.3 87.5

20 100 83.3 100

21 100 83.3 87.5

22 100 79.2 95.8

23 95.8 95.8 83.3

24 95.8 70.8 83.3

25 95.8 70.8 87.5

26 100 87.5 62.5

27 91.7 95.8 95.8

28 100 83.3 70.8

29 100 75 95.8

30 95.8 95.8 100

Ave 97.3 83.6 88.9
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for the number of false positives and false negatives to be kept 
to a minimum. 

The experiments show that abnormal behaviour can be 
identified for improving the level of security and assisting the 
operator with attack detections. 

6.3 System Function 

The system functions by allowing the operator to customise 
data collection through use of an observer pattern. This is 
done with a HMI interface where, features to be extracted 
from system data, can be chosen. 

The system enhances critical infrastructure security by 
monitoring physical behaviour of the system and allowing the 
operator to detect changes in behaviour which could be the 
result of an attack taking place. The changes in behaviour are 
detected using the data classification techniques presented in 
this paper, from data which is collected by an observer pattern. 

7. CONCLUSION AND FUTURE WORK 

Our research presents a way of improving critical 
infrastructure security by identifying threats, and unusual 
activity, through behavioural observation. Our technique, for 
critical infrastructure support, adds to the defence in depth that 
is currently in place. Using our approach, multi-level security 
is enhanced. 

In this paper, a critical infrastructure simulation is used to 
create substantial datasets. The behaviour of the system 
remains consistent during each simulation however subtle 
changes in data patterns can be seen due to normal random 
variations in system behaviour. Using the data constructed we 
present a way of improving critical infrastructure security by 
identifying threats, and unusual activity, through behavioural 
observation.  

The novel contribution of our work includes the collection 
of physical data from multiple components using an observer 
pattern and the classification of the data collected using data 
classification algorithms. Our research focuses on the use of 
component behaviour rather than network data to develop a 
system which can accurately identify threats to the system. 

Future work will include the development of a hybrid 
model which would not only look at patterns of normal 
behaviour and identify deviations but also look at threat data. 
This combines both signature based detection with anomaly 
detection to produce a more effective security approach. We 

will also investigate how patterns of behaviour, including 
threats, can be processed in real-time and investigate the use 
of multiple datasets and different attack scenarios to enhance 
our results further. 
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