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ABSTRACT 

III-nitrides based devices are considered as outstanding options for a range of 

extremely relevant applications. These devices can significantly improve the 

efficiency of high-power switching appliations. They are predicted to dominate 

applications in the low carbon economy. In recent years, these devices have been 

steadily improved and each year new record performances have been reported.  

Regardless of the superior performance of III-nitrides based devices, and 

particularly AlGaN/GaN high electron mobility transistors (HEMTs), achieving 

reliability at the same time as the high performance that the device boasts is a factor 

that is holding back widespread commercial and industrial development. 

Recoverable degradation (e.g. current collapse and on-resistance) and 

unrecoverable degradation (e.g. access resistance of contacts, and gate leakage 

current) persist to be limiting reliability factors.  

The mechanisms contributing towards performance and reliability degradation of 

AlGaN/GaN HEMTs, namely self-heating, charge trapping and strain, are required 

to be minimised; an important step before large-scale deployment can be attained. 

The strong coupling of these degradation mechanisms, under normal device 

operation, makes the quantitative contribution of each mechanism indistinct due to 

the lack of standard characterisation techniques. 

In this Thesis, the impact of the source/drain (S/D) and gate terminals of an 

AlGaN/GaN HEMT on its thermal management was investigated. Using Infrascope 

measurements, a substantial increase in temperature and resistance at the inner ends 

of the S/D contacts was observed. High-resolution X-ray diffraction technique 

combined with drift-diffusion (DD) simulations showed that strain reduction at the 

vicinity of S/D contacts is the origin of temperature rise. The strain reduction was 

also observed below the metal gate. Through electro-thermal simulations, the 

electrical stress on Ohmic contacts was shown to reduce the strain; leading to the 

inverse/converse piezoelectric effect.  

A new parametric technique was developed to decouple the mechanisms 

constituting device degradation in AlGaN/GaN HEMTs under normal device 
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operation, namely self-heating and charge trapping. Both source (IS) and drain (ID) 

transient currents were used under various biasing conditions to analyse charge 

trapping behaviour. Two types of charge trapping mechanisms have been identified: 

(i) bulk trapping occurring on a time scale of < 1 ms, followed by (ii) surface 

trapping and redistribution > 1 ms. Through monitoring the difference between 𝐼𝑆 

and 𝐼𝐷, bulk trapping time constant is shown to be independent of 𝑉𝐷𝑆 and 𝑉𝐺𝑆. Also, 

𝑉𝐺𝑆 is found to have no effect on the bulk trap density. Surface trapping is found to 

have a much greater impact on slow degradation when compared to self-heating 

and bulk trapping. At a short time scale (< 1 ms), the RF performance is restricted 

by both bulk trapping and self-heating effects. At a longer time scale (> 1 ms), the 

dynamic ON resistance degradation is limited mainly by surface trapping 

accumulation and redistribution. 

Using the understanding of the degradation mechanism behaviour and origins, 

optimisations to the Ohmic and Schottky contacts as well as a new AlGaN/GaN 

HEMT architecture were proposed. In an attempt to improve the thermal 

management of S/D contacts, an Ohmic contact recess process is proposed to reduce 

the access resistance and enhance DC/RF performance of AlGaN/GaN HEMTs with 

a high Al concentration. A contact resistance (𝑅𝐶) of ~0.3 Ω.mm was achieved via 

optimal recess conditions. Small 𝑅𝐶 was found to lead to a higher current density 

at the inner edges of the contact, which resulted in a large increase of channel 

temperature beneath the S/D contacts. A highly n-doped AlGaN overgrowth layer 

was proposed to reduce the current density, and thus channel temperature at the 

Ohmic contacts. Titanium Nitride (TiN) Schottky processing was implemented to 

minimise the observed strain reduction beneath the gate metal. The optimal 

Schottky contact is obtained for TiN thicknesses of < 10 nm, which preserves the 

strain within the AlGaN barrier layer. As a result, Schottky barrier of 1.06 eV, a 

leakage current of 6 nA and improved linearity of 1.6 was achieved. In addition,     

C – V and I – V characterisations revealed very low trapping density within the 

optimised device. Lastly, a new device architecture was proposed to increase the 2-

dimentional electron gas (2DEG) density and mobility, without compromising the 

enhancements of our proposed S/D and gate optimisations. This structure consists 

of (i) step-graded AlGaN barrier layer to increase strain and (ii) AlN spacer layer. 
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𝑳𝑺𝑮  Source-to-gate distance 

𝑳𝑻  Transfer length 

𝒎𝒆
∗   Electron effective mass 

𝒏  Electron concentration 

𝑵𝒄𝒓𝒊𝒕  Doping concentration when the mobility reaches the average 

value of 𝜇𝑚𝑎𝑥 and 𝜇𝑚𝑖𝑛 

𝑵𝑩  Impurity density concentration 

𝑵𝑫  Donor concentration 

𝒏𝒔  Electron sheet density 

𝒑  Hole concentration 

𝑷  Power density 

𝑷𝑫𝑰𝑺𝑺  Dissipated Power 

𝒑𝒈  Arbitrary band-gap energy parameter 

𝑷𝒏  Thermoelectric power of electron 

𝑷𝒑  Thermoelectric power of hole 

𝑷𝑷𝑬  Piezoelectric polarisation 

𝑷𝑺𝑷  Spontaneous polarisation 

𝒓  Strain relaxation 

𝑹  Bulk recombination rate of carriers 
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𝑹□  Sheet resistance 

𝑹𝑪  Ohmic contact resistance 

𝑹𝒇  Resistance of the alloy sidewall of the Ohmic contact 

𝑹𝑶𝑭𝑭  OFF-state resistance 

𝑹𝑶𝑵  ON-state resistance 

𝑹𝒔𝒂  Sheet resistance of the metal/alloy interface 

𝑹𝑺𝑯  Sheet resistance outside of the Ohmic contact area 

𝑹𝑺𝑲  Sheet resistance beneath the metal of the Ohmic contact 

𝑹𝒔𝒖  Sheet resistance of the alloy/semiconductor interface 

𝑹𝑻  Total resistance 

𝑹𝑻𝑯  Thermal resistance 

𝑺  Metal contact area 

𝒕  Time 

𝒕𝒃𝒓  Thickness of step-graded barrier layer 

𝒕𝒃𝒇  Thickness of buffer layer 

𝒕𝑬  Pulse edge time 

𝒕𝒕  Wafer thickness 

𝒕𝑫  Alloy depth 

𝒕𝒔𝒑  Thickness of spacer layer 

𝒕𝑾  Pulse width 

𝑻  Temperature 

𝑻𝑪𝑯  Channel temperature 

𝑻𝑳  Local lattice temperature 

𝑽𝑩𝑫  Breakdown voltage 

𝑽𝑫  Drain voltage 

𝑽𝑫𝑭  OFF-state drain voltage 

𝑽𝑫𝑴  ON-state drain voltage 

𝑽𝑫𝑺  Drain-source voltage 

𝑽𝑮𝑭  OFF-state gate voltage 

𝑽𝑮𝑴  ON-state gate voltage 

𝑽𝑯  Hall voltage 

𝑽𝒎  Metal voltage 

𝑽𝑺  Source voltage 
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𝒗𝒔𝒂𝒕  Saturation velocity 

𝑽𝑺𝑪  Semiconductor voltage 

𝑽𝑻𝑯  Threshold voltage 

𝑾  Metal contact width 

𝑾𝑭  Metal work function 

𝒙  Aluminium concentration percentage 

𝒙𝑨𝒍𝑮𝒂𝑵  Electron affinity of AlGaN 

𝜶   Lattice constant of semiconductor material 

𝜶𝒈, 𝜷𝒈  Empirical constant for GaN 

𝜶𝝀, 𝜷𝝀  Fitting coefficient 

𝜷, 𝜸, 𝜹  Temperature dependent coefficient 

𝜟𝑻   Temperature rise 

𝜺  Strain within semiconductor material 

𝜺𝟏𝟑, 𝜺𝟑𝟑  Piezoelectric coefficient 

𝜺𝒓  Semiconductor dielectric constant 

𝜼   Ideality factor of Schottky contact 

𝝀  Thermal conductivity 

𝝁   Electron mobility 

𝝆  Resistivity of semiconductor material 

𝝆𝒄  Specific contact resistivity 

𝝆𝒄𝒂  Specific contact resistance of the metal/alloy interface 

𝝆𝒄𝒖   Specific contact resistance of the alloy/semiconductor 

interface 

𝝈𝑽𝒈  Schottky gate voltage 

𝝉𝒊  Thermal time constant 

𝚽𝒃𝒏  Schottky barrier height 

𝚽𝑴𝑮  Metal work-function 

𝚽𝒏  Quasi-fermi level of electron 

𝚽𝒑  Quasi-fermi level of hole 
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Since the fabrication of the first silicon (Si) device in 1958 by Gibbons’ Stanford laboratory 

[1], Si-based devices have been, by far, the most widely used technology in the semiconductor 

industry. The Si metal-oxide-semiconductor field effect transistor (MOSFET) has been the 

primary driver for the growth of the industry. However, Si MOSFETs have reached their limit 

in terms of power density, mobility and efficiency [2]–[8]. Also, scaling of these devices will 

reach its theoretical limit in the coming years as a result of the intrinsic material properties such 

as: (i) low breakdown voltage, (ii) low saturation velocity, (iii) low inversion layer mobility, 

and (iv) high device resistance [9]. To account for these limitations, several new semiconductor 

materials have been developed to accommodate the increasing need for devices that can 

provide higher output power at higher operating voltages and higher operating frequencies. In 

particular, III-nitride semiconductors such as gallium nitride (GaN) have gained significant 

attention in accommodating this need due to their superior material properties.  

1.1. Background 

To begin our investigation into III-N-based devices, we firstly advanced our knowledge in the 

development of GaN technology since its discovery; this includes the use of GaN technology 

applications and market. The importance of GaN in these applications has been shown through 

a comparison with other competing semiconductor materials using a range of Figures of Merit 

(FOMs). 

1.1.1. History of GaN Technology 

Since the discovery of Gallium (Ga) in 1897, the use cases of the newly found material were 

minimal. The introduction to the most widely used Ga compound in application today was not 

developed until 1930, where the first synthesis of GaN was produced [10]. Interest in the new 

compound did not reach any significance until 1938, where a technique was to powder GaN, 

producing small needles and platelets in order to investigate its crystal structure and lattice 

constant [11]. Successful and notable research into the development of GaN from this point did 

not arise until 1969, when the first deposition of GaN was produced using Hydride Vapour 

Phase Epitaxy (HVPE) [12]. Soon after, in 1971, the first GaN light emitting diode (LED) was 

fabricated [13]. This is the beginning of a large growth in the GaN market in industrial 

applications. The reason this development was so crucial to the market is that GaN is one of 
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few semiconductor materials that is capable of emitting blue light. This development is 

important as the optical applications of GaN are the driving force of the GaN market, even 

today. 

The idea of a high-electron mobility transistor (HEMT) was introduced in 1980 with the 

aluminium gallium arsenide-on-gallium arsenide (AlGaAs/GaAs) HEMT [14]. The novelty of 

this structure is that two materials of different bandgaps are incorporated into the device 

structure to form a channel as opposed to the structure of an inversion layer device. This new 

structure introduced the idea of dopant injection prevention in the semiconductor material that 

would cause device damage, thereby reducing device mobility and reliability. It was only in 

1991 that GaN technology caught up with this newly discovered structure. Here, the rapid 

progression in the development of GaN began when the first normally-ON AlGaN/GaN HEMT 

was produced via metal organic chemical vapour deposition (MOCVD) [15]. A crucial property 

to GaN’s success today was also discovered in 1991 from this structure as a result of the 

technological improvements towards wafer production under high temperature. A high electron 

density channel at the AlGaN/GaN interface, known as the two-dimensional electron gas 

(2DEG) was also discovered in 1991. From this point on, rapid progression and interest was 

gained by academic research and industry in the development of GaN. A notable milestone was 

achieved in the GaN industry in 2000, when AlGaN/GaN HEMT technology was successfully 

grown on Si substrates via MOCVD [16]. The first normally-OFF GaN based modulation-

doped field-effect transistor (MODFET) was fabricated in 1995 [17], although, the first patent 

involving normally-OFF GaN-based devices was not submitted until 2001 [18]. 

More recent developments came in 2007, when Toshiba developed a new GaN HEMT that 

operates at Ku-band (12 GHz to 18 GHz) that achieved 65.4 W at 14.5 GHz [19]. This 

technology was to add an n-GaN cap layer to an AlGaN/GaN HEMT grown on silicon carbide 

(SiC). Transphorm established the first qualified 600 V GaN-on-SiC device in 2009 and 600 V 

GaN-on-Si in 2010 [20]. Also in 2010, the first commercially available GaN power device was 

introduced by International Rectifier. At this point, a highly sophisticated, ultra fast monolithic 

microwave integrated circuit (MMIC), matched to a multi-switch monolithic GaN-based power 

device, was produced, doubling the switching speed of state-of-the-art silicon-based integrated 

power stage devices [21]. This was the highest operating voltage observed for GaN HEMTs at 



 

CHAPTER 1 INTRODUCTION 

  

 

 

4 

 

the time. From then, adoption of GaN-based technology exponentially increased as GaN 

became a viable solution for more applications. Soon after, in 2012, a merge in operations 

between Fujitsu Semiconductor and Transphorm occurred. From then on, many new 

applications were introduced into the market with the new 600 V GaN device platform such as 

the world’s first photovoltaic power conditioner, ultra-small AC adapters, highly efficient 

motion control, high-density power supplies for personal computers, servers and telecoms 

equipment, and many more [22]. 

1.1.2. Why GaN Technology? 

GaN is a material that is used in the production of many semiconductor applications that are 

later described. The technology has demonstrated that it is significantly more capable than the 

commonly used Si devices for a range of applications. The limitation of Moore’s Law for Si 

devices prevents the increase of power capabilities of Si [23]. Therefore, GaN is the new 

emerging technology that can overcome the power and frequency limitations of Si. With its 

ability to conduct a much higher density of electrons at higher velocity, all at a low production 

cost, GaN-based devices are increasing its value in the semiconductor industry [24], [25]. The 

following presents a current list of exceptional properties that are responsible for the success 

of GaN technology:  

 A large breakdown field is achieved from the large bandgap of GaN, which is 

particularly useful for high power applications. The relationship between the critical 

field, 𝐸𝑐𝑟𝑖𝑡, and bandgap, 𝐸𝑔, is given by [26]: 

𝐸𝑐𝑟𝑖𝑡 = 1.02 × 107√
𝑞

𝜀𝑟
𝑁𝐵

1/8𝐸𝑔
3/4 

(1.1) 

Where 𝑞 is the charge of an electron, 𝜀𝑟 is the permittivity of GaN, 𝑁𝐵 is the impurity 

density concentration.  

 The high electron saturation velocity of GaN, 𝑣𝑠𝑎𝑡 ≈ 1.7 × 107 cm s-1 at 300 K, is a 

particularly desired parameter for high frequency applications. This is a temperature 

dependent parameter that is enhanced considerably in AlGaN/GaN HEMTs, to be 

explained in Section 2.1.2. However, for bulk semiconductor materials, 𝑣𝑠𝑎𝑡  is 

calculated by: 



 

CHAPTER 1 INTRODUCTION 

  

 

 

5 

 

𝑣𝑠𝑎𝑡(𝑇𝐿) =
𝑣𝑠𝑎𝑡,300𝐾

(1 − 𝐴𝑛) + 𝐴𝑛 ∙ (
𝑇𝐿

300)
 

(1.2) 

 

where 𝑣𝑠𝑎𝑡,300𝐾 is the electron saturation velocity at 300 K, 𝐴𝑛 is a model parameter 

specific to the semiconductor material used, and 𝑇𝐿 is the lattice temperature. 

 GaN has the ability to operate under extreme temperatures (up to 700 oC) [27], [28] 

when formed into a HEMT structure. Along with their high-frequency and high-power 

capabilities, this is significantly beneficial for harsh environments. 

 High quality GaN-based devices can be grown onto large diameter Si substrates. As a 

result, GaN production costs are considerably low and can be integrated onto many Si 

applications.  

 GaN is a direct band gap material where no additional energy is required to recombine 

into excitons. This is particularly useful for oscillator, amplifier and photovoltaic 

applications. The bandgap of GaN (3.4 eV) allows for photons of around 450 nm 

wavelength (blue light) to be emitted upon recombination of electrons and holes [29], 

which allows GaN to be used as a blue LED. The bandgap is conveniently in the ultra-

violet (UV) region which means that electrons in the GaN bulk excite to the conduction 

Table 1.1: A comparison of the material properties of GaN and other competitors in the semiconductor 

industry. 

Property GaN 

(AlGaN/GaN) 

Si 4H-SiC GaAs 

Bandgap, 

𝑬𝒈 (eV) 
3.4 1.1 3.3 1.4 

Breakdown electric field, 

𝑬𝑩𝑫 (MV cm-1) 

2.0 

(5.6) 
0.3 3.0 0.4 

Electron mobility, 

𝝁 (cm2 V-1.s-1) 

900 

(2000) 
1400 700 8500 

Electron saturation velocity, 

𝒗𝒔𝒂𝒕 (×107 cm s-1) 

1.5 

(2.5) 
1.0 2.0 2.0 

Thermal conductivity, 

𝝀 (W cm-1.K-1) 
1.5 1.5 5.0 0.5 

Dielectric constant, 

𝜺𝒓 
8.9 11.7 10.0 12.9 
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band when exposed to UV light with >364 nm wavelength. This makes them 

exceptionally good as UV detectors.  

In addition, a comparison of the fundamental material properties of Si, GaN, 4H hexagonal 

polytype Silicon Carbide (SiC), and GaAs is shown in [30], [31]. Although GaAs needs doping 

to operate as a device, the mobility provided is for undoped GaAs and, hence, is significantly 

larger than if it were doped. These properties allow GaN-based devices to operate under high 

temperature and high pressure environments where Si devices are incapable of functioning. To 

note, AlGaN/GaN-based devices have enhanced properties whereby 𝜇 is increased to 2000 cm2 

V-1s-1 and 𝑣𝑠𝑎𝑡 is increased to 2.5 × 107 cm s-1. 

1.1.3. GaN Applications and Market 

GaN-based devices have been implemented into a range of applications, shown by the III-

nitrides device applications roadmap given in Figure 1.1, such as high-frequency, high-power-

RF, renewable energy, automotive, UV/IR-sensors, low-cost surveillance, street-lighting, 

weather-systems, environmental-friendly, solar-blind, radars, 4G/WiMAS base-stations, ultra-

wide-band communication, low-noise, ultra-scaled high-temperature, military, sensors for 

harsh environmnents, biological research,…etc [32]–[51]. The inset of Figure 1.1 shows the 

significant advantages of III-nitride materials over conventional semiconductors in several 

device parameters. As a result, many UK and international companies, such as GaN-Systems, 

Cree, Infineon & Panasonic, Toshiba, Fujitsu & Transphorm, Texas Instruments, Navitas, 

NXP-semiconductor, Dynex, Oxford-Plasmatech, IXYS, Thales, OMMIC etc., are 

substantially increasing their investments toward GaN research and gaining scale to reach a 

high-level of mass production [52]. For example, NXP-semiconductor has spent over £2.5M 

in 2014 on the process technology of GaN blue LEDs [51], [54]. In addition, the UK 

government and EU-Commission are supporting academia to boost research into the 

development of the GaN technology by providing more funding grants and encouraging for 

closer collaborations between academia and industry [45], [52], [54]. An example of such 

actions is the ‘UK PowerGaN’ consortium that includes 7 UK universities and 12 UK 

companies [55]. The market value of these devices stands to exponentially increase to an 

estimated $600m by 2024 and $1.7bn by 2027 [56]. 
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1.1.4. Figures of Merit 

In addition to the superior material properties of GaN, several widely used FOMs show the 

value of GaN in a range of applications. Each FOM is used for benchmarking semiconductors 

with respect to different application types. These FOMs take into account several relevant 

material properties that contribute towards the particular application type that the FOM is 

aimed towards. The higher the FOM value the higher performance that the semiconductor has 

in the relevant application type.  

To begin, Johnson’s Figure of Merit (JFOM) provides a quantitative estimate for the 

performance of a semiconductor material in high power applications operating at high 

frequencies. The relevant material properties are accounted for in the JFOM calculation [26]: 

𝐽𝐹𝑂𝑀 =
𝐸𝐵𝐷𝑣𝑠𝑎𝑡

2𝜋
 (1.3) 

where 𝐸𝐵𝐷 is the breakdown electric field, and 𝑣𝑠𝑎𝑡 is the electron saturation velocity.  

Secondly, Baliga’s High-Frequency Figure of Merit (BHFFOM) focuses on the performance 

of field-effect transistors at high frequency power switching applications, where switching 

 

Figure 1.1: III-Nitrides device applications roadmap (short, mid and long-term growth driver). The 

inset shows a comparison of GaN, 4H-SiC, Si and GaAs high-power RF transistors [57]. 
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losses are dominant, showing that significant power loss reduction can be achieved with high 

BHFFOM [58]: 

𝐵𝐻𝐹𝐹𝑂𝑀 = 𝜇𝐸𝐵𝐷
2 (

𝑉𝐺

4𝑉𝐵
3)

1 2⁄

 (1.4) 

where 𝜇 is the charge carrier mobility, 𝑉𝐺 is the gate drive voltage, and 𝑉𝐵𝐷 is the breakdown 

voltage. 

Finally, Keyes’ Figure of Merit (KFOM) is used to estimate the thermal limitation to the 

switching behaviour of transistors when used in integrated circuits (ICs) [59]: 

𝐾𝐹𝑂𝑀 = 𝜆 (
𝑐𝑣𝑠𝑎𝑡

4𝜋𝜀𝑟
)
1 2⁄

 (1.5) 

where 𝜆  is the thermal conductivity, 𝑐  is the velocity of light (3×10-8 m s-1), and 𝜀𝑟  is the 

dielectric constant. 

Table 1.2 quantitatively depicts the suitability of GaN and other competing semiconductor 

materials in a range of application types with respect to various FOMs. A JFOM of 270 – 480 

and 324 – 400 for GaN and 4H polymorphism of SiC, respectively, shows that both materials 

dominate in suitability for high-power and high-frequency applications [31]. GaN, however, is 

superior to 4H-SiC and all other competitors when compared with BHFFOM, boasting 17 to 

34 times the suitability as Si, 1.5 to 2.5 times that of GaAs and 3 times that of SiC. The only 

FOM that has been used for comparison where GaN is not superior is KFOM. This is due to 

the large thermal conductivity of 4H-SiC compared to GaN. However, GaN is still 1.4 times 

Table 1.2: A comparison of the various Figures of Merit (FOM) for GaN and other semiconductor 

competitors [26]. 

Property GaN Si 4H-SiC GaAs 

Johnson’s Figure of Merit, 

(JFOM) 

760 1.0 180 7.1 

Baliga’s High-Frequency Figure of Merit, 

(BHFFOM) 

77.8 1.0 22.9 10.8 

Keyes’ Figure of Merit 

(KFOM) 

1.6 1.0 4.61 0.45 

 



 

CHAPTER 1 INTRODUCTION 

  

 

 

9 

 

larger than Si and 3.5 times that of GaAs but 4H-SiC is much larger than GaN for this FOM.  

Regardless, for high-power and high-frequency applications, III-N semiconductors, GaN in 

particular, are far superior to that of Si. 

1.2. Rationale 

Regardless of the superior performance of III-N-based devices, and particularly AlGaN/GaN 

HEMTs, achieving reliability at the same time as the high performance that the device boasts 

is a factor that is holding back widespread commercial and industrial development [60], [61]. 

Recoverable degradation, e.g. current collapse and on-resistance, along with unrecoverable 

degradation, e.g. access resistance of contacts, and gate leakage current persist to be limiting 

reliability factors [60]–[62]. In addition, the access resistance of AlGaN/GaN HEMTs is 

required to be reduced in order to obtain optimal performance. 

Despite the increasing efforts that have been devoted to improving reliability in III-N devices, 

a well-defined understanding of the underlying physics and mechanisms of defects and 

limitation effects is still largely unknown and currently impedes the device reliability progress 

[60], [61]. The mechanisms contributing towards degradation of AlGaN/GaN HEMTs, namely 

self-heating, charge trapping and strain, are required to be analysed in order to develop this 

understanding. To identify the primary mechanism contributing towards the device degradation, 

these degradation mechanisms need to be decoupled using a newly developed electrical 

parametric technique.  

1.3. Research Aim and Objectives 

In this Thesis, we evaluate the degradation and failure mechanisms of AlGaN/GaN-based 

devices, namely (i) self-heating, (ii) charge-trapping, and (iii) strain, with the aim to analyse 

strain-induced self-heating effects on access resistance and to decouple self-heating from 

charge trapping. These degradation mechanisms contribute towards current collapse and 

degradation of both power and radio-frequency (RF) performance. Through the knowledge 

gained from understanding the degradation mechanisms, we propose new device architectures 

to improve device reliability. In order to achieve this, the following objectives are realised: 

1. Investigate the self-heating and strain mechanisms in AlGaN/GaN HEMTs using 
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Infrared (IR) Camera and High-Resolution X-Ray Diffraction (HR-XRD) technology 

under various biasing conditions. 

2. To identify the relationship between device geometry and polarisation within 

AlGaN/GaN-based devices. 

3. For the first time, develop a new electrical characterisation technique to decouple 

charge trapping mechanisms, namely bulk trapping and surface trapping, from self-

heating under normal device operation. 

4. Identify the primary cause of device dynamic degradation from the newly developed 

electrical characterisation technique. 

5. Optimise the Ohmic contacts of AlGaN/GaN HEMTs by developing new process 

technology to reduce the contact resistance and improve device performance. 

6. Improve the Schottky contacts through the optimisation of the TiN metallisation 

scheme to reduce gate leakage and enhance the high frequency capabilities of the device. 

7. Propose new device architectures with the replacement of several layers of a 

conventional HEMT to enhance the 2DEG density and electron mobility within the 

device. 

1.4. Organisation 

Chapter 1 describes a background to GaN technology, including its history, why it is used in 

industrial applications, what those applications are, and its FoMs that determine its 

applicability in various application types (e.g. high power or RF). The rationale behind the 

research carried out through this Thesis is then given, briefly describing the issues with III-N-

based devices, the importance of understanding these issues, and need for a new reliability 

characterisation technique to be developed. This leads to the research aim and objectives that 

are accomplished throughout this Thesis in order to challenge the device limitations. Finally, 

the original contribution towards the III-N-based device reliability field that the work in this 

Thesis presents is discussed. 

Chapter 2 of this Thesis introduces a background to the physical properties of III-N materials. 

The typical Wurtzite crystal structure, the material properties of GaN and its polarisation effects 

are discussed. From then, an in-depth description of AlGaN/GaN based devices is given to 

provide fundamental understanding of the device used throughout the research given in this 
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Thesis. Included in this section is an explanation of (i) the physics behind the formation of a 

2DEG channel at the AlGaN/GaN interface, (ii) the operation of an AlGaN/GaN HEMT, (iii) 

the choice of substrate and contact metallisation, (iv) its state of the art, and (v) comparison 

versus other competing semiconductors. In addition, a discussion is made for non-invasive and 

employed characterisation techniques used for measuring the operating temperature 

distribution (Infrared, Micro-Raman, Micro-Resistance thermal detector), charge trapping 

(Photoluminescence), strain (High-resolution X-ray diffraction), 2DEG sheet density, electron 

mobility (Hall-effect) and I – V characteristics (DC and Pulse measurements). Finally, the 

current development challenges for GaN technology are discussed to provide rationale for the 

research that follows this chapter. 

Chapter 3 involves strain-induced self-heating effects on source/drain access resistance of 

AlGaN/GaN-based devices and interplay of self-heating and polarisation. There is not a well 

defined understanding of the origins of access resistance degradation during normal device 

operation within AlGaN/GaN-based devices. Therefore, we investigate the temperature and 

strain profiles within small and large AlGaN/GaN Transmission Line Models (TLMs) as well 

as AlGaN/GaN HEMTs using an IR camera and HR-XRD. Additionally, AlGaN/GaN TLMs 

are simulated to understand the interplay between device geometry with self-heating and 

polarisation. Calibrated technology computer aided design (TCAD) simulations are used to 

show that hot spots of temperature at the edge of the drain contact is induced by high electric 

field. Also, inverse piezoelectric effect is shown to decrease with decreased device length due 

to stress on Ohmic contacts. 

Chapter 4 focuses on the development of a new electrical parametric technique to characterise 

drain and gate induced charge trapping. This is accomplished with the exclusion of self-heating 

and under normal device operation. The range of misconceptions of current research, 

investigating the cause of degradation of transient current, lead us to examine this degradation 

using our newly developed technique. The source and drain transient currents are measured 

under normal operating conditions in order to analyse the charge trapping contribution to 

transient current degradation with the exclusion of self-heating, for the first time. The 

dependency on biasing conditions for both bulk and surface trapping are then found through 

analysis of the current transient measurements. Finally, the primary contribution towards 
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transient current degradation is identified to lead us towards the primary focus for optimisation 

of device architecture. 

Chapter 5 proposes several optimisations to the Ohmic and Schottky contacts as well as device 

architecture in order to minimise degradation and improve the reliability of AlGaN/GaN-based 

devices. The output of this research is the result of collaborations with University of Lille, 

Swansea University and University of Malaya. The reduction of access resistance, identified 

as an issue in Chapter 3, is accomplished through (i) recessing Ohmic contacts into the AlGaN 

barrier layer and (ii) overgrowing the AlGaN at an angle to reduce self-heating effects. A 

proposition for optimising the Schottky contact through implementation of a TiN metallisation 

is then investigated to understand how it reduces gate leakage and enhances operating 

frequency. The results gained from these two propositions are experimental measurements. 

Finally, to enhance the 2DEG electron mobility, a new simulated AlGaN/GaN HEMT 

architecture is proposed. This is achieved through the implementation of a (i) step-graded 

AlGaN barrier, (ii) AlN spacer, and (iii) InGaN channel layer, which contributes towards the 

applicability of AlGaN/GaN HEMTs in applications of high-power and high-frequency 

requirements. 

Chapter 6 concludes the work provided by each chapter throughout this Thesis. In addition, a 

discussion of the future works for this project is given. 

1.5. Original Contribution to Research Field 

A variety of tasks have been accomplished in the research constituting this Thesis. The original 

contributions to the research field are as follows: 

1. Successfully investigated the temperature rise at Ohmic contacts in AlGaN/GaN-based 

devices. Using Infrared temperature mapping system measurements, a large increase in 

temperature at the S/D contacts of a long AlGaN/GaN gateless device was observed. 

These temperature peaks are shown to be coupled in smaller devices, owing to the large 

increase in temperature at the centre of the device. For gated devices, the thermal 

coupling is revealed to enhance the temperature peak at the drain-side edge of the gate. 

Additionally, HR-XRD measurements and Drift-Diffusion (DD) simulations show a 

reduction in strain at the S/D Ohmic contacts. This is found to be the reason behind the 
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temperature rise within AlGaN/GaN-based devices. 

2. Effects of device geometry on self-heating effects in AlGaN/GaN-based devices is 

analysed using DD transport model simulations. In shorter devices, the limitation of 

current in I – V characteristics was found to occur sooner than in long structures as a 

result of increased lattice temperature. In addition, the total polarisation within the 

device is found to reduce in larger devices due to the inverse piezoelectric effect, which 

has a direct impact on the degradation of 2DEG density within the channel. 

3. A new source and drain transient currents characterisation technique has been 

developed for decoupling charge trapping from self-heating in AlGaN/GaN HEMTs 

under normal device operation. Using this technique, charge trapping behaviours under 

various bias conditions have been analysed with the exclusion of self-heating. Charge 

carriers that are trapped within the GaN bulk layer (bulk trapping) has been identified 

to be equal to the difference between the source current (𝐼𝑆) and drain current (𝐼𝐷). The 

bulk trapping magnitude is found to change as a result of drain bias, but not gate bias. 

Additionally, surface trapping is shown to be the dominant mechanism in slow 

degradation over a slow self-heating mechanism and its magnitude and its time to 

temperature saturation (temperature time constant) are dependent on both drain and 

gate bias. 

4. Source and drain Ohmic contacts are etched into the AlGaN barrier layer of the 

AlGaN/GaN HEMT in order to reduce its contact resistance, thereby increasing current 

density through the device. An AlGaN overgrowth layer for Ohmic contacts is also 

proposed to reduce self-heating effects near the contacts.  

5. A TiN metalisation scheme is developed, to generate quasi-p type doping in the AlGaN 

barrier layer, which enhances Schottky arrier height and reduces gate leakage.  

6. Several optimisations to the architecture of a conventional AlGaN/GaN HEMT are 

applied (i.e. step-graded barrier, exclusion layer, and InGaN channel layer) to improve 

2DEG density and mobility.   
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An insight into the AlGaN/GaN-based device fundamentals and its characterisation techniques 

are discussed in this chapter. Firstly, the physical properties of III-N semiconductor materials 

are described, including crystal structure, the material properties of GaN and polarisation 

effects present in III-N based materials. A description is provided for the physical functionality 

of the quantum well at the heterojunction, also known as a 2-dimensional electron gas (2DEG), 

of AlGaN/GaN HEMTs. The structure, operation and growth of AlGaN/GaN HEMTs as well 

as the typical substrate choices are reviewed. In addition, various performance enhancing layers 

for AlGaN/GaN-based devices are revised. From then, the metallisation schemes of the Ohmic 

and Schottky contacts are described, showing their role in enhancing device performance. To 

show the current performance capabilities of AlGaN/GaN HEMTs, their state-of-the-art is 

provided. Additionally, the advantages and disadvantages of AlGaN/GaN heterojunction in 

comparison to bulk GaN based technologies are given. Degradation mechanisms, (i) self-

heating, (ii) bulk-trapping, and (iii) surface trapping, are then discussed. Furthermore, a 

description of non-invasive characterisation techniques that are used throughout this Thesis is 

summarised. Finally, the challenges that are preventing widespread commercial and industrial 

development of AlGaN/GaN HEMTs are discussed, providing a basis to the rationale of this 

research. 

2.1. Physical Properties of III-N Materials 

This section describes two commonly used crystal structures (Wurtzite and Zinc-blende). In 

addition, the several material properties of GaN (the III-N material of focus for this Thesis) are 

discussed, including bandgap, electron drift velocity, electron mobility, electron effective mass 

and energy, and thermal conductivity. Finally, a major beneficial factor known as polarisation, 

namely spontaneous and piezoelectric polarisation, of III-N materials is explained.  

2.1.1. Crystal Structure 

The crystal structure of group III-N based semiconductor materials (i.e. GaN, AlGaN, AlN, 

InN) is either (i) Wurtzite (α-phase) or (ii) Zinc-blende (β-phase). 

The GaN Wurtzite crystal, illustrated in Figure 2.1, is a stable and hexagonal structure that is 

non-centrosymmetric; it lacks inversion symmetry. In this structure, there are strong bonds of 

Ga and N, owing to the large bandgap of 3.4 eV in comparison to Zinc-blende structure of 3.2 
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eV. GaN is most commonly used in its Wurtzite crystal form with [0001] orientation when used 

in HEMTs. This crystal structure is also thermodynamically stable, which allows for its good 

thermal resistance. This is important to avoid disrupting the alignment of GaN atoms when 

subjected to intense heat of over 600 oC given by annealing of Ohmic contacts during device 

fabrication. The Zinc-blende crystal structure is a meta-stable, face-centred cubic crystal 

structure. This structure is more common in conventional III-V semiconductors (e.g. GaAs, InP, 

and InSb) [63], [64]. In this Thesis, we focus on GaN in its Wurtzite form as it is the optimal 

crystal structure for our purposes [65], [66]. 

2.1.2. Material Properties 

III-N semiconductor materials own exceedingly more beneficial material properties that 

dominate other conventional semiconductors. These include wide bandgap, high electron drift 

velocity, high electron mobility, good thermal stability, and relatively high thermal conductivity. 

Knowledge of the properties of III-N materials is essential for understanding device physics of 

AlGaN/GaN HEMTs.  

2.1.2.1.  Bandgap 

The band gap (𝐸𝑔) of a material is defined as the minimum energy required for an electron to 

move from the valence band (𝐸𝑣) to the conduction band (𝐸𝑐). This can be described as the 

difference in energy between the top of the valence band and the bottom of the conduction band 

of a material: 

 

Figure 2.1: Crystal structure of GaN in Wurtzite form [67]. 

 

Aluminium 

Gallium 
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𝐸𝑔 = 𝐸𝑐 − 𝐸𝑣 (2.1) 

Materials with large band gap (> 9 eV) are considered to be insulators, zero bandgap for 

conductors, and in between for semiconductors. The wide band gap of GaN in Wurtzite crystal 

structure is 3.4 eV. This allows for its application in various high power applications. 

Additionally, direct band gap of GaN is the reason for its success in the blue LED market. 

The bandgap of GaN is considered to be thermally stable, as modelled by the following 

equation: 

𝐸𝑔 = 𝐸𝑔,0𝐾 −
𝛼𝑔𝑇𝐿

2

𝛽𝑔 + 𝑇𝐿
 

(2.2) 

where 𝐸𝑔,0𝐾 = 3.47 eV is the band gap at 0 K, 𝛼𝑔 = 0.8 meV K-1 and 𝛽𝑔 = 800 K are empirical 

constants for GaN, and 𝑇𝐿 is the lattice temperature. These empirical constants for GaN are 

gathered from the research into modelling the band gap [68]. 

2.1.2.2.  Electron Drift Velocity 

The electron drift velocity is the average velocity that electrons attain within a material due to  

an applied electric field. It is essential for this property to be enhanced in order for devices to 

perform at high frequency. Using our in-house Monte Carlo simulators, the relationship 

between electron drift velocity and electric field at different lattice temperatures, ranging from 

300 K to 700 K, is calculated, as shown in Figure 2.2. The linearity of drift velocity with electric 

field decreases at ~20 kV cm-1, as a result of polar optical phonon emission [69]. Although, this 

phenomenon vanishes at high lattice temperatures. The peak drift velocity at 300 K and 700 K 

of 3 × 107 cm s-1 and 2.3 × 107 cm s-1 is reached at 150 kV cm-1 and 210 kV cm-1, respectively. 

This can be explained by the fact that electrons gain enough energy for a transfer into the 

satellite valleys by intervalley phonon scattering. The increased relaxation of electron energy 

and momentum results in a higher critical electric field for heating electrons, which increases 

the probability of electron scattering into the satellite valleys. Thus, if we assume the constant 

separation energy for satellite valleys (we neglect a band gap renormalisation due to the change 

in temperature), the critical electric field increases with temperature, while the peak drift 

velocity decreases. However, the saturation velocity shows a reduction of 20 % in the 

temperature range of 300 K to 700 K, as shown in Figure 2.3. To note, a very good agreement 
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is obtained when our results are compared to [70]. 

 

Figure 2.2: Electron drift velocity versus electric field in GaN for different lattice temperatures 

(from 300 to 700 K by a step of 50 K). The inset compares measured (dashed line) low field 

electron mobility of GaN as a function of the lattice temperature with Monte Carlo simulations 

(solid line). 

 
Figure 2.3: Saturation velocity of GaN versus lattice temperature. Comparison between the results 

of [70] (dash line) and the Monte Carlo data (solid line). 
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2.1.2.3.  Electron Mobility 

Similar to all semiconductor materials, the drift velocity per unit of electric field (electron 

mobility) of GaN is temperature dependent. Figure 2.4 shows measured and Monte Carlo 

calculated low field mobility at 𝑁𝐷  = 1015 cm-3 and 𝑁𝐷  = 1017 cm-3. The electron mobility 

saturation is observed at very high lattice temperature, primarily limited by longitudinal optical 

phonon scattering. The measurements of low field mobility have been carried out in the 

temperature range of 300 to 500 K, due to the limitation of the Hall effect measurement. We 

observed a large drop of the electron mobility between 𝑁𝐷 = 1015 cm-3 and 𝑁𝐷 = 1017 cm-3. The 

Monte Carlo data is compared to experimental results [71] showing very good agreement.  

2.1.2.4.  Electron Effective Mass and Energy 

Taking into account the electron scattering terms and degeneracy, our Monte Carlo simulations 

show that the electron effective masses and energy relaxation times are nearly identical for all 

considered lattice temperatures (Figure 2.5 and Figure 2.6) [72]–[75]. 

At low applied electric field, low electron energy, charge carrier scattering is dominated by (i) 

acoustic deformation potential scattering, (ii) piezoelectric phonon scattering and (iii) impurity 

scattering. At this point, electron temperature is less than the polar optical phonon temperature. 

Therefore, polar optical phonon emissions rarely occur and free carriers with low effective 

 

Figure 2.4: Low field mobility of GaN versus lattice temperature. Measured (circles) and 

Monte Carlo data at 𝑁𝐷 = 1015 cm-3 (solid line) and 𝑁𝐷 = 1017 cm-3 (dashed line). 
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mass are a majority. At the critical electron energy of ~2.2 eV and beyond, electrons are excited 

to higher energy valleys in the conduction band, whereby their effective mass is increased. 

With higher effective mass, greater collisions occur that increases the charge carrier scattering 

and reduces steady-state velocity. 

 

 

 

Figure 2.5: Effective mass as a function of electron energy at different lattice temperatures (from 

300 K to 700 K by step of 50 K). 

Figure 2.6: Energy – electric field characteristics at different lattice temperatures (from 300 K to 

700 K by step of 50 K). 
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The increase of average electron energy with electric field is shown in Figure 2.6. Initially, the 

electron energy remains low and close to the thermal energy given by 3 2⁄ 𝑘𝐵𝑇𝐿; where 𝑘𝐵 is 

Boltzmann’s constant. This is due to the energy gained by electrons through the applied electric 

field being lost via polar optical phonon scattering. From the critical electric field (~180 kV 

cm-1) to ~320 kV cm-1, both polar optical phonon and intervalley scattering remain at relatively 

low rates. Hence, a large increase of energy occurs. The energy gain begins to saturate towards 

320 kV cm-1 as intervalley scattering begins whereby an energy balance is re-established. To 

note, elastic scattering mechanisms such as acoustic deformation potential scattering, 

piezoelectric scattering, and impurity scattering do not impact the energy of the charge carriers.  

2.1.2.5.  Thermal Conductivity 

The thermal conductivity, 𝜆, is the property that characterises heat dissipation throughout a 

material. High power applications are particularly favoured devices that use high thermal 

conductivity materials for their ability to reduce self-heating and effective thermal management. 

The thermal conductivity dependency on temperature can be defined as [76]: 

𝜆 = 𝜆300 × (
𝑇𝐿

300
)
𝛼

 
(2.3) 

Where 𝜆300 is the thermal conductivity at 300 K and 𝛼 is a fitting parameter. Using Equation 

(2.3) and parameters summarised in Table 2.1 for each substrate, the behaviour of thermal 

conductivity of several commonly used substrates (i.e. GaN, Si, SiC and Al2O3) with respect 

to lattice temperature is shown in Figure 2.7. 

SiC is shown to be a good candidate in terms of thermal conductivity for low lattice 

temperatures. However, it degrades significantly when reaching higher temperatures. In 

addition, from a GaN-based device point of view, the influence of phonon scattering from the 

large thermal mismatch between the GaN buffer layer and SiC substrate induces greater 

thermal resistance at the GaN/SiC interface. Ideally, for high temperatures, GaN would be the 

optimal substrate, although, it is very costly for growing wafers with a GaN substrate. 

Therefore, SiC is the optimal substrate to use in terms of thermal conductivity. To note, Si 

would not be the most optimal in terms of thermal dissipation but will be the most beneficial 

substrate to use for co-integration of GaN-based devices into existing applications. Despite its 

low thermal conductivity, Al2O3 is still considered as a good candidate for optical applications. 
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2.1.3. Polarisation 

The spontaneous and piezoelectric polarisations are a primary feature of AlGaN/GaN HEMTs 

that is enhanced by its Wurtzite structure. This is a vital characteristic necessary for providing 

high electron mobility and allowing high power capabilities when forming the AlGaN/GaN 

heterostructure. The lattice (𝑎, 𝑎0, 𝑐0), piezoelectric (𝜀13, 𝜀33) and elastic parameters (𝐶13, 𝐶33) 

for GaN and AlN, shown in Table 2.2, are used in the calculation of both spontaneous and 

piezoelectric polarisations that are later discussed. 

Table 2.1: Thermal conductivity at 300 K and fitting parameters for each substrate used to measure 

thermal conductivity behaviour. 

Material 𝝀𝟑𝟎𝟎 [W m-1K-1] 𝜶 

GaN 125 -0.43 

Si 148 -1.33 

SiC 330 -1.61 

Al2O3 23.1 -1 
 

 

Figure 2.7: Model of thermal conductivity – temperature characteristics of various substrates (GaN, 

Si, SiC, Al2O3) using model of Equation (2.3) and thermal conductivities at 300 K and fitting 

parameters from Table 2.1. 

Table 2.2: Structural parameters for AlN and GaN 

Material 𝒂 𝒂𝟎 𝒄𝟎 𝜺𝟏𝟑 𝜺𝟑𝟑 𝑪𝟏𝟑 𝑪𝟑𝟑 

GaN 3.197 5.210 5.185 -0.37 0.67 68 354 

AlN 3.108 4.983 4.982 -0.62 1.50 94 377 
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2.1.3.1.  Spontaneous Polarisation 

The lack of inversion symmetry in the Wurtzite structure along its pyroelectric axis (c-axis) 

and the difference in electronegativity of Ga (1.81) and N (3.04) are the origins of spontaneous 

polarisation (𝑃𝑆𝑃). Spontaneous polarisation is induced by opposite sheet charges that occur at 

the faces of the Wurtzite crystal; positive sheet charge at one face and negative sheet charge at 

the other relative to the direction of the crystal, hence the use of [0001] crystal direction.  

This opposite sheet charge is a result of a difference in electronegativity (the tendency for an 

atom to attract electrons) in the Ga-atoms and N-atoms that causes the Ga-N bond to exhibit 

mixed ionic-covalent bonds. Hence, the GaN compound is subjected to an electric dipole 

moment, a measure of polarity in a compound. As the arrangement of bonds in a GaN Wurtzite 

crystal is not perfectly symmetrical, the ideal unit cell height (𝑐0) and the lattice constant (𝑎), 

are not equal. Therefore, there are opposite charges at the Ga-face of the crystal compared with 

the N-face. 

For spontaneous polarisation to occur, there needs to be a difference in the ideal 𝑐0 to 𝑎 ratio 

of 1.633. Given the 𝑐0/𝑎 ratio of AlN (1.6030) and GaN (1.6218) provided in Table 2.3 [77], it 

is clear that the ratio is not ideal. Greater difference in 𝑐0/𝑎 occurs for AlN than GaN and, 

therefore, greater spontaneous polarisation occurs in AlN than GaN. 

Table 2.3: Spontaneous polarisation parameters for AlN and GaN 

Parameter AlN GaN 

𝒄𝟎/𝒂 1.6030 1.6218 

𝑷𝑺𝑷 [C/m2] -0.090 -0.034 
 

For different materials, the spontaneous polarisation can be seen in Figure 2.8. This shows the 

linear Vegard-like interpolation and the second order approximation of spontaneous 

polarisation in disordered ternary nitride alloys. This approximation is calculated using the 

parabolic model and bowing parameters [78]. It can be seen that the higher the lattice mismatch 

constants between each ternary, the higher the spontaneous polarisation. 

𝑝(𝐴𝑥𝐵1−𝑥𝑁) = 𝑥𝑝(𝐴𝑁) + (1 − 𝑥)𝑝(𝐵𝑁) + 𝑏𝐴𝐵𝑁𝑥(1 − 𝑥) (2.4) 

where 𝑝 is the arbitrary band-gap energy parameter, 𝑏 is the bowing parameter (AlGaN = -0.8 

eV, AlInN = -3.4 eV, and InGaN = -1.4 eV. 
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2.1.3.2.  Piezoelectric Polarisation 

Piezoelectric polarisation (𝑃𝑃𝐸) is induced when a material is subjected to mechanical stress. 

Mechanical stress originates from the elastic behaviour of the material governed by its elastic 

stiffness constant, a measure of how “hard” the material is. As a result, a charge develops in 

the crystal structure of a material when piezoelectric polarisation is induced. The piezoelectric 

polarisation is positive for when the AlGaN layer is compressively strained and negative for 

tensile strain. 

The piezoelectric polarisation is calculated by: 

𝑃𝑃𝐸 = 2 ∙
𝑎 − 𝑎0

𝑎0
(𝜀13 − 𝜀33 ∙

𝐶13

𝐶33
) (2.5) 

where 𝜀13 and 𝜀33 are the piezoelectric coefficients, and 𝐶13 and 𝐶33 are the elastic constants.  

Polarisation effects that stem from a strained material. Electrical polarisation effects in a 

material is given by the summation or difference between spontaneous and piezoelectric 

polarisation: 

 

Figure 2.8: Spontaneous polarisation with respect to lattice constant of multiple compounds. The 

dashed red lines show linear Vegard-like interpolation, solid black lines show the approximation to 

second order in disordered ternary nitride alloys. 
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𝑃 = 𝑃𝑆𝑃 ± 𝑃𝑃𝐸 (2.6) 

2.2. AlGaN/GaN-Based Device Structure 

This section provides fundamental information on the structure, operation and growth of 

AlGaN/GaN-based devices. To begin, how a high density 2DEG is formed through the 

AlGaN/GaN heterostructure is explained. From then, the primary device used throughout this 

Thesis, an AlGaN/GaN HEMT, is described in terms of its structure, operation and growth 

techniques. The benefits of various substrates that these devices are grown on is compared. 

Ohmic and Schottky contacts used for control over the operation of AlGaN/GaN HEMTs are 

then described. The state-of-the-art AlGaN/GaN HEMTs that are produced by various 

international companies are shown. Lastly, the advantages that AlGaN/GaN HEMTs have over 

other materials and their disadvantages, in terms of degradation mechanisms that impact device 

reliability, are discussed. 

2.2.1. 2-Dimentional Electron Gas (2DEG) Formation 

The formation of a 2DEG channel is a vital property of AlGaN/GaN-based devices. Through 

inducing strain, by the growth of a heterojunction, piezoelectric polarisation within the strained 

material is induced. This piezoelectric polarisation greatly contributes towards the formation 

of a high density 2DEG channel, to be described in the following sections. 

2.2.1.1.  Strain 

The interface between two semiconductor layers of different lattice constants, and therefore 

different bandgaps, is known as a heterojunction, e.g. AlGaN/GaN. As there is a mismatch in 

lattice constants between AlGaN and GaN, simply growing a thin AlGaN layer on top of GaN 

will cause mechanical strain within the AlGaN layer, as illustrated in Figure 2.9. Mechanical 

stress originates from the elastic behaviour of the material governed by its elastic stiffness 

constant, a measure of how “hard” the material is. The AlGaN layer experiences strain in both 

x and y direction (biaxial strain) due to deformation of the material to align with GaN. The 

tensile strain (𝜀𝑠) in AlGaN increases its lattice constant and aligns its atoms with those of GaN 

to create a heterojunction. The lattice mismatch and the amount of strain applied to the AlGaN 

layer can be calculated by [79], [80]: 
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∆≡
|𝑎𝐴𝑙𝐺𝑎𝑁 − 𝑎𝐺𝑎𝑁|

𝑎𝐴𝑙𝐺𝑎𝑁
 

(2.7) 

 

𝜀𝑠 = 𝛥 ∙ (1 − 𝑟) (2.8) 

where 𝑟 is the amount of strain relaxation. 

2.2.1.2.  Polarisation  

Piezoelectric polarisation is induced as a result of tensile strain in the thin AlGaN barrier layer 

[81]. The 𝑃𝑃𝐸  and 𝑃𝑆𝑃  in a typical AlGaN/GaN HEMT are illustrated in Figure 2.10. 𝑃𝑃𝐸  is 

negative, same as the 𝑃𝑆𝑃, for tensile strain when the AlGaN layer is grown on top of GaN. 𝑃𝑆𝑃 

is inherent in both AlGaN and GaN. The 𝑃𝑃𝐸 is, however, induced in the strained AlGaN barrier 

 

Figure 2.9: Illustration of how AlGaN is strained upon growth on GaN to form 2DEG. 

 

Figure 2.10: Spontaneous and piezoelectric polarisation as well as charge that produces a 2DEG in 

a typical AlGaN/GaN HEMT. 
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layer, but not in the relaxed GaN buffer layer. This produces negative charge at the top of the 

AlGaN layer and positive charge at the bottom. To note, 𝑃𝑃𝐸  can be positive for when the 

AlGaN layer is compressively strained. This strain forms defects in AlGaN, the effects of which 

are discussed in Section 3.2. 

2.2.1.3.  2-Dimensional Electron Gas (2DEG) 

The discontinuity of the polarisation (𝑃𝑃𝐸 and 𝑃𝑆𝑃) at the interface of AlGaN/GaN is the origin 

of quantum well creation, also known as 2DEG formation. The importance of 𝑃𝑃𝐸 and 𝑃𝑆𝑃 on 

energy band in AlGaN/GaN HEMTs is shown in Figure 2.11, illustrating the band bending 

influence that each polarisation has on the quantum well formation. 

For up to 35 % Al concentration, the piezoelectric polarisation has the greatest influence on the 

band bending and, therefore, 2DEG density. 

The energy band diagram of the heterostructure of a basic AlGaN/GaN HEMT is given in 

Figure 2.12. There is a large conduction band offset (∆𝐸𝐶) of 0.68 eV for Al0.27Ga0.73N and 

GaN that is created due to the difference in affinity between Al0.27Ga0.73N and GaN of 3.14 eV 

and 3.5 eV, respectively [83]. The 2DEG density (𝑛𝑠) can be increased with (i) greater  

 

Figure 2.11: AlGaN/GaN energy band diagram demonstrating effects of 𝑃𝑆𝑃 and 𝑃𝑃𝐸 on conduction 

energy band [82]. 
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concentration of Al in AlGaN, and (ii) increased AlGaN barrier thickness, shown in Figure 2.13 

given by the Schrodinger-Poisson 1D model [84]. However, increasing these parameters 

beyond its optimal value will cause the strain in the AlGaN barrier to relax. Hence, typically 

used parameters are around 30 to 40 % Al concentration and 20 nm barrier thickness. Although 

𝑛𝑠  is shown to be greater with increased Al concentration beyond 40 %, it is not used in 

practicality as access resistance increases as a result. We propose an optimisation of Ohmic 

contacts in order to reduce the access resistance, which may allow for greater Al concentrations, 

and/or an AlN exclusion layer to be feasible. 

 

Figure 2.12: Band structure of AlxGa1-xN/GaN heterostructure showing 2DEG formation at the 

AlxGa1-xN/GaN heterojunction as a result of quantum well formation. 

 

Figure 2.13: 2DEG sheet density relationship with AlGaN mole fraction. 
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2.2.2. High Electron Mobility Transistor (HEMT) 

2.2.2.1.  Device Structure 

A practical example of the structure of an AlGaN/GaN HEMT is described in this section. In 

this device, a thick layer of GaN (around 2 to 3 µm to ensure strain relaxation in buffer) is 

grown onto a substrate (i.e. Si, SiC, and Al2O3) by either (i) molecular beam epitaxy (MBE) or 

(ii) metal organic chemical vapor deposition (MOCVD). Using the same epitaxy material 

growth technique as chosen for the buffer, a thin layer of AlxGa1-xN (around 20 nm) is grown 

on top of the GaN layer. Typically, the concentration percentage (x) of aluminium (Al) in 

AlxGa1-xN is up to 0.40. Higher concentrations of Al in this basic structure will result in 

relaxation of the AlGaN layer, reducing the strain of the material and, therefore, the 2DEG 

sheet density. Additional layers have been implemented into this structure in order to enhance 

the performance of the device. The following states the layers’ (from bottom to top) typical 

properties and purposes that are used in more recently developed AlGaN/GaN based HEMTs. 

 Substrate – The AlGaN/GaN HEMT is typically grown on a non-native substrate (i.e. 

Si, SiC, and Al2O3). The selection of the substrate is governed by four factors (i) 

resistivity, (ii) thermal conductivity, (iii) capable wafer size, and (iv) cost. 

 Nucleation layers – A thin set of AlN, AlGaN and/or GaN layers (10 to 20 nm each) is 

grown on the substrate. These layers reduce the lattice mismatch between the buffer 

layer and the substrate. Hence, interface roughness is reduced, which reduces the 

thermal resistance between the buffer and substrate, allowing greater heat dissipation 

from the 2DEG to the substrate. Additionally, these layers increase the vertical 

breakdown voltage by reducing the vertical electric field between the drain side and the 

substrate. The choice of nucleation layers is dependent on the epitaxial growth 

technique and substrate that is used. 

 Back-Barrier Layer – A thick and low Al concentration (x < 0.15) AlxGa1-xN layer (1 

to 2 µm) can be used to reduce leakage current in the buffer layer. As a result, greater 

energy is required by electrons to overcome the energy back-barrier and leak into the 

buffer layer. 

 Buffer Layer – A thin GaN layer (>15 nm) is used as the buffer layer when grown upon 

a back-barrier layer. This forms a quantum well and enhances the 2DEG confinement. 
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If there is no back-barrier layer then a thick buffer layer of GaN (2 to 3 µm) is employed 

to ensure strain relaxation. 

 Exclusion Layer – A very thin aluminium nitride (AlN) layer (1 nm) is an option for 

reducing alloy scattering beneath the Ohmic contacts and improving carrier 

concentration in the 2DEG. However, this layer prevents optimal Ohmic contact 

formation, which degrades the source/drain access resistance. This degradation is 

discussed in Section 5.2. 

 Barrier Layer – A thin layer of AlxGa1-xN (~20 nm), where x < 0.40, is grown above 

the exclusion layer or GaN buffer layer. This is to induce piezoelectric polarisation and, 

therefore, 2DEG formation.  

 Cap Layer – To prevent oxidation and defect formation at the surface of the barrier 

layer, the implementation of a very thin GaN layer (1 to 2 nm) is common.  

 Passivation Layer – A thin silicon nitride (Si3N4) or silicon dioxide (SiO2) layer (~200 

nm) grown after device fabrication to minimise defect formation at the surface of the 

device. 

2.2.2.2.  Device Operation 

The AlGaN/GaN HEMT consists of 3-terminals (source, gate, and drain) and is a modification 

of a metal-semiconductor field-effect transistor (MESFET). The three metal terminals are 

given of which the source and drain terminals are made up of Ohmic contacts and the gate 

terminal is made of a Schottky contact. The gate terminal is placed more towards the source 

side (asymmetrical gate) to reduce the high electric fields between the drain and the gate that 

occur under high drain voltages. This increases the HEMTs lateral breakdown voltage and 

reduces self-heating within the device.  

An AlGaN/GaN HEMT cross-section with an illustration of its operation under ON-state and 

OFF-state conditions is shown in Figure 2.14(a) and (b), respectively. The devices used 

throughout this Thesis are normally-ON, the 2DEG is formed without applying a voltage on 

the gate terminal (VGS). The switching from ON-state (VGS > VTH) to OFF-state (VGS < VTH) is 

controlled by applying VGS, which controls the 2DEG sheet density in the channel. In OFF-

state conditions, VGS < VTH, the 2DEG will deplete, thereby preventing current flow through 

the device.  
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The applied VGS controls the 2DEG sheet density in the channel. The drain-to-source voltage 

(VDS), however, governs the conductance in the channel. Figure 2.15 shows the vertical 

conduction band edge profile, at the middle gate of an AlGaN/GaN HEMT, in (a) ON-state and 

(b) OFF-state. The relative distance between the conductuion band edge and the Fermi level 

(𝐸𝐹) is influenced by VGS. This lowers the conduction band energy, in respect to 𝐸𝐹, when 

positive, providing a larger 2DEG. Closing the channel involves raising the conduction band 

energy above 𝐸𝐹, by applying VGS < VTH. 

 

Figure 2.14: Illustration of GaN-based HEMT with AlGaN/GaN heterostructure and Si3N4 

passivation when the device is in (a) ON-state, and (b) OFF-state. 

 

Figure 2.15: Influence of the gate voltage on the energy band structure: a) 𝑉𝐺𝑆 > 𝑉𝑇𝐻 and b) 

𝑉𝐺𝑆 < 𝑉𝑇𝐻. 
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2.2.2.3.  Semiconductor Growth Technique 

 Two main growth techniques, molecular beam epitaxy (MBE) and metal-organic chemical 

vapour deposition (MOCVD), are used to grow AlGaN/GaN heterostructures on a range of 

substrates. Generally, MBE is used for research purposes and MOCVD is used for mass 

production. 

A.  Molecular Beam Epitaxy (MBE) 

MBE grows the GaN material using elemental sources and heating a substrate in an ultra-high 

vacuum environment, 10-5~10-11 Torr pressure that conserves the purity of the material by 

vacuuming out contaminant molecules that may be trapped inside the material causing defects. 

The instruments used to perform this are illustrated in Figure 2.16. It is particularly used for its 

ability to produce an atomically sharp interface [85]. To begin to grow the GaN crystals using 

this technique, the substrate is heated and then GaN molecules are fired at the heated substrate 

from separate beams as relatively precise beams known as effusion cells. Control over these 

effusion cells stems from shutters that cover the beams when an unequal amount of two 

molecules or more are required, e.g. Al0.3GaN0.7; here, molecules that hit the substrate then 

condense. The condensed molecules impinge on the surface of the substrate, at a flux rate 

determined by the effusion cells, which then migrate towards other condensed molecules 

forming islands. This eventually forms an ultra-thin crystalline layer of GaN, as shown in 

Figure 2.17. Typically the Frank-van der Merwe (layer-by-layer) growth mode is adopted for 

buffer layer growth on HEMT devices when using MBE. 

 

Figure 2.16: Molecular Beam Epitaxy layer-by-layer growth on substrate process. 
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 There are several processes that the GaN molecules may adopt during this growth process. 

The molecules may become adsorbed onto the substrate or GaN surface through weak, physical 

bonds via Van Der Waals forces (physisorbed), molecules become chemically bonded to the 

surface through an electron exchange process (chemisorbed), or molecules will diffuse about 

the surface from energy provided by the substrate which provides growth [86]. Continuing the 

process, a second crystalline layer is built upon this and the process repeats until eventually a 

thick GaN layer is formed. Unfortunately, temperatures lower as the GaN becomes thicker as 

the substrate is the source of heat. This results in interface roughness at the final layers of GaN 

as the source temperature (speed of molecular arrival and flux rate) does not provide enough 

energy for the GaN molecules to migrate towards the GaN islands hence the necessity for such 

substrate that requires high temperatures to provide sufficient flux. 

B. Metal-Organic Chemical Vapour Deposition (MOCVD) 

MOCVD, or Metal-organic vapour-phase epitaxy (MOVPE) is the growth of thin layers of 

compound semiconducting materials via co-pyrolysis of organometallic compound and hydride 

combinations. This is the primary technique of growth for virtually all III-N compounds using 

chemical reaction, as opposed to physical deposition that MBE harnesses. In comparison, 

 

Figure 2.17: Molecular Beam Epitaxy (MBE) instruments used for growing AlGaN/GaN-based 

devices. 
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MOCVD is a much faster process, films grown at ~1 µm min-1, when compared to MBE and a 

much cheaper alternative [87]. This is the thermochemical decomposition of materials by 

reaction with vapour-phase precursors, e.g. the gaseous state of ammonia (NH3) used to 

chemically react with GaN, when under high temperatures, between 1000 to 1100 oC for GaN 

and above 1100 oC for AlGaN , due to the high chemical bond strength of GaN and typically 

under low pressure, between 15 to 750 Torr. Growth of GaN on substrate results in Ga-face 

polarity unlike the N-face polarity of MBE. 

The system used to achieve growth of semiconductor materials using MOCVD is illustrated in 

Figure 2.18. This process involves forming oriented β-Ga2O3 nanoclusters at the surface of the 

substrate after exposure to Ga. From then, strong N2 reactivity from a nitridation process under 

high plasma power and substrate temperature for a long time, whereby GaN nucleation occurs. 

With greater nucleation, coalescence of GaN occurs due to the decreasing distance between 

GaN nucleators. This process iterates to produce columnar growth of GaN which then leads to 

lateral growth to complete the MOCVD process. This process is illustrated in Figure 2.19. 

Although, several issues occur with this method of growth. Due to the high temperatures 

required for deposition there is reduced control on the growth of GaN, one main concern is 

surface roughness. Although, the implementation of an AlN buffer layer deposited on the 

sapphire substrate improves the electrical and crystal qualities of grown GaN. High volatility 

of N results in a large concentration of NH3 present in the gas. 

 

Figure 2.18: Schematic diagram of the MOCVD deposition system [26]. 
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2.2.3. Substrate Choice 

An appropriate choice of substrate can provide significant advantages to the performance of 

the device that is grown on top of it. Some factors that determine the viability of the chosen 

substrate are: (i) the resistivity (ii) thermal conductivity; (iii) lattice mismatch at the 

buffer/substrate interface; (iv) density of dislocations; (v) cost per unit area; and (vi) size of the 

wafer. In addition, the lattice mismatch at the buffer/substrate interface, given by Equation 

(2.9), needs to be carefully considered when designing the device architecture. 

𝐿𝑎𝑡𝑡𝑖𝑐𝑒 𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ (%) = 100 × (
𝑎𝑏𝑓 − 𝑎𝑠𝑢𝑏

𝑎𝑏𝑓
) (2.9) 

where 𝑎𝑏𝑓  and 𝑎𝑠𝑢𝑏  is the in-plane lattice constant of the buffer and substrate layer, 

respectively. 

Lattice mismatch is a source of buffer/substrate interface roughness, dislocations in the buffer, 

and defect generation, reduction of AlGaN/GaN HEMT RF performance. It is also responsible 

for thermal resistance increase at this interface, reducing the dispersion of the heat out of the 

device and into the substrate.  

 

Figure 2.19: MOCVD illustration showing how reactants are deposited onto the substrate to form 

layers of semiconductor compounds [88]. 



 

CHAPTER 2 AlGaN/GaN-BASED DEVICE FUNDAMENTALS 

   

 

37 

 

A summary of the material properties that are valuable for viability as a substrate in 

AlGaN/GaN based devices is given in Table 2.4. 

 

2.2.3.1.  Silicon (Si) 

Si is by far the most widespread semiconductor material used in the semiconductor industry. 

Therefore, it has very high commercial availability as a substrate for various wafer diameters 

(from 2 to 12-inch) and has low cost to manufacture, due to the well-established fabrication 

techniques. The thermal conductivity of Si (100) is not exceptionally high, with a value of 1.5 

W cm-1K-1 [89]. Also, the lattice constant of Si (100) is high (5.431 Å) in comparison to GaN 

(3.189 Å) [90], [91]. Hence, the use of Si (111) is a preferred option due to its lower lattice 

constant (3.366 Å), higher thermal conductivity (2.5 W cm-1K-1) and higher resistivity (6.0 

Ω.cm) [92]–[94]. The vast majority of silicon substrates, Si (111) in particular, are high purity 

(1 part dopant per million). 

2.2.3.2.  Silicon Carbide (SiC) 

4H-SiC and 6H-SiC, although not as abundant as Si, is widely available in the semiconductor 

industry, but for relatively small wafers (up to 4-inch). These substrates are expensive to 

manufacture in comparison to other materials. Regardless, SiC is the most commonly used 

substrate for commercialised AlGaN/GaN HEMTs. This is due to their high thermal 

conductivity, ranging from 3.7 to 4.9 W cm-1K-1, and their low lattice mismatch with GaN 

(<3.4%) [93], [95]. This is particularly useful for AlGaN/GaN HEMTs in high-power 

applications as these substrates dissipate the heat more effectively than other conventinal 

substrates. 

Table 2.4: A comparison of the relevant material properties of substrates typically used in 

AlGaN/GaN based devices. 

Property GaN Si(100) Si(111) 4H-SiC 6H-SiC Al2O3 

Lattice Constant, 

𝒂 (Å) 

3.189 5.431 3.366 3.073 3.073 4.758 

Lattice Mismatch, 

(%) 

0 41.3 5.3 3.4 3.4 34 

Thermal Conductivity, 

𝝀 (W cm-1.K-1) 

1.3 1.5 2.5 3.7 4.9 0.5 
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2.2.3.3.  Sapphire (Al2O3) 

Al2O3 is a readily available substrate with wafers of up to 8-inches in diameter and is also cost 

effective. The thermal conductivity, however, is very low at 0.5 W cm-1K-1 [96]. In addition, 

with a lattice constant of 4.758 Å, the lattice mismatch is higher than other substrates (34%) 

[97]. Here, a large defect density will be present from the large lattice mismatch and, under 

normal operation, AlGaN/GaN HEMTs would experience higher temperatures compared to 

other materials. For this reason, this material is a good option for optical applications. 

2.2.3.4.  Gallium Nitride (GaN) 

GaN substrates are not abundantly available but can reach diameters up to 6 inches. 

AlGaN/GaN HEMT grown on a GaN substrate is lattice mismatch free (0 %); this is known as 

homoepitaxial growth. As a result, there is greater power performance at higher frequency. For 

AlGaN/GaN-on-GaN device applications, particularly blue LEDs, there is a much greater 

device lifetime when comparing with other substrates. Although the thermal conductivity of 

GaN (1.3 W cm-1K-1) is less than SiC, the interface thermal resistance does not occur [98]. This 

is significantly beneficial for heat dissipation via the substrate. Therefore, GaN substrates are 

considered as a viable option for high-frequency and RF applications but better alternatives are 

available for high-power operation (SiC). 

2.2.4. AlGaN/GaN HEMTs State of the Art 

As described in Chapter 1, AlGaN/GaN HEMTs have considerably high power (up to 40 W 

mm-1) and high frequency (up to 100 GHz) properties. A visual representation of the state-of-

the-art AlGaN/GaN HEMTs from numerous manufacturers and universities is provided in 

Figure 2.21 by comparing the maximum output power with the maximum operating frequency 

[99]–[116]. It can be seen that AlGaN/GaN HEMTs grown on SiC substrates provide higher 

maximum power than Si. This is due to the high thermal conductivity of SiC in comparison to 

other substrates. Although, the growth of GaN on SiC results in interface roughness between 

GaN/SiC. This interface roughness causes the GaN/SiC interface to act as a thermal resistor 

which keeps heat within the device. The interface roughness issue also occurs with GaN/Si. 

Regardless, AlGaN/GaN on SiC is clearly a better but ~10 times expensive option than using 

Si substrates, provided by the Institute of Electronics, Microelectronics and Nanotechnology 

(IEMN) in the University of Lille. For the purposes of this research, devices on Si substrate 
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will be used as they are less expensive and (ii) it allows for the co-integration with existing and 

previous Si(111) technologies. 

2.2.5. Metallisation of Device Contacts 

Optimal metallisation of contacts is a necessity to contributing towards the high performance 

characteristics and reliability of any semiconductor device. Their contribution towards 

AlGaN/GaN HEMTs in particular is even greater than other devices due to the high power that 

these devices operate.  

Metal contacts are used to provide charge carrier transport mechanisms to/from the 

semiconductor. The mechanisms of charge carrier transport throughout metal/semiconductor 

junction are:  

1. Thermionic emission (TE) – Charge carriers move over the top of the contact barrier 

and into/out of the metal contact. 

2. Field emission (FE) – Charge carriers tunnel through the contact barrier and into/out of 

the metal. 

3. Thermionic field emission (TFE) – Charge carriers become ‘hot’ and tunnel through the 

top of the contact barrier into/out of the terminal. 

4. Emission by ‘hopping’ of charge carriers, particularly through deep traps. 

 

Figure 2.20: Benchmarking of state-of-the-art AlGaN/GaN HEMTs on Si and SiC, using power 

saturation vs. frequency, showing the superiority of AlGaN/GaN HEMTs on SiC. 
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These mechanisms are illustrated in Figure 2.21, whereby the dominant mechanism of transport 

in AlGaN/GaN HEMTs is FE for Ohmic contacts and both TE and TFE for Schottky contacts 

[117], [118].  

There are two types of metal contacts present in AlGaN/GaN HEMTs that have different 

metallisations and transport mechanisms: (i) Ohmic contact that is used as the source/drain 

electrode, and (ii) Schottky contact used as the gate electrode.  

2.2.5.1.  Ohmic Contact 

The Ohmic contact (source/drain terminals) controls the flow of current through an 

AlGaN/GaN HEMT. Ohmic contacts of low-resistance, high thermal stability and smooth 

morphology are required for optimal performance of AlGaN/GaN HEMTs. These 

characteristics will provide: (i) low device ON-state resistance, (ii) low power dissipation in 

the Ohmic contacts, (iii) maximum drain current, and (iv) high extrinsic transconductance (𝐺𝑚), 

that enhances current gain cut-off frequency (𝑓𝑇), and maximum oscillating frequency (𝑓𝑀𝐴𝑋).  

Ohmic contacts are formed through rapid thermal annealing (RTA) at high-temperature and 

tend to have several metal stacks that each play their own role in optimising the Ohmic 

behaviour of the contacts. Typical metal schemes used for the Ohmic contact stacks, from 

bottom-to-top, and their roles are given: 

 Titanium (Ti) – Ti bonds with the nitrogen (N) in the AlGaN barrier layer to form a 

 

Figure 2.21: Illustration of charge carrier transport mechanisms for (i) TE, (ii) FE, (iii) TFE, and 

(iv) emission by ‘hopping’; where 𝐸𝐹𝑀 is the metal Fermi level. 
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TiN alloy when RTA is applied to the contacts. High temperature allows the bonds to 

form, the short time of annealing prevents the reaction of Ti with the GaN buffer layer 

to provide a smooth metal/semiconductor interface. The bonds appear at threading 

dislocations at the metal/semiconductor interface either through rapid diffusion of 

atoms or from nucleation at low energy sites of TiN. This alloy has a lower work 

function, aiding in contact formation and facilitating charge carrier tunneling. N 

vacancies are also created as a result of the alloy formation. This causes the AlGaN 

barrier beneath the contact to become highly n-doped. As there is a thin potential barrier 

which separates the 2DEG and contact, electrons are able to easily tunnel to/from the 

2DEG to the contact. 

 Aluminium (Al) – Al bonds with Ti to form an Al3Ti alloy. This alloy minimises 

oxidation of the Ti layer and, hence, contributes to the conductivity of the contact. Also, 

Al bonds with the N in the AlGaN barrier layer to form an AlN alloy. This results in N 

vacancies which yields a heavily doped interface beneath the contact. Electrons can 

easily tunnel to/from the 2DEG as a result. 

 Nickel (Ni), Molybdenum (Mo), Platinum (Pt), or Titanium (Ti) – The electron 

affinity of this layer is to be lower than that of the semiconductor layer in order to 

provide low sheet resistance at the metal/AlGaN interface. This layer has a low work 

function to achieve this. Additionally, this layer minimises the out-diffusion of Al, the 

in-diffusion of gold (Au), and the intermixing of the Al and Au layers to form Al2Au 

bonds. Al2Au is a highly resistive alloy that is detrimental to the operation of the Ohmic 

contact.  

 Gold (Au) – Au is a highly conductive material which is why it is used in the 

metallisation of the Ohmic contact. In addition to this, Au minimises the oxidation of 

the Ti and Al layers of the contact when annealed at high temperatures which enhances 

the contact conductivity further. 

When Ohmic contacts are formed with RTA at high temperatures, voids are produced beneath 

the TiN alloy. The voids are enhanced by higher annealing temperatures and contribute to the 

contact resistance, reducing the current flow through the HEMT. Voids generation beneath the 

Ohmic contacts are a major reliability issue. Voids increase the contact resistance and as a result 

they inherently affect the high frequency operation of the device [119]. This issue is addressed 
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in Section 5.2. As a result of the bonding of metal stacks, high n-doping concentration is in the 

semiconductor, narrowing the depletion layer. This allows charge carriers to tunnel through the 

barrier layer from the 2DEG to the metal contact, or vice versa, but does not lower the 

conduction band to allow for thermionic emission. Hence, field emission is the primary 

transport mechanism in Ohmic contacts.  

2.2.5.2.   Schottky Contact 

Schottky contacts are used as the gate terminal for AlGaN/GaN based devices. This contact 

controls the 2DEG density within AlGaN/GaN HEMTs. Upon applying a bias to the gate, the 

2DEG carrier density is modulated at the AlGaN/GaN interface. The defining feature that 

allows this to occur is known as the Schottky barrier height (𝜙𝑏𝑛). In theory the Schottky barrier 

height is calculated by the following equation: 

𝜙𝑏𝑛 = 𝑊𝐹 − 𝑥𝐴𝑙𝐺𝑎𝑁 (2.10) 

where 𝑊𝐹 is the metal work function, and 𝑥𝐴𝑙𝐺𝑎𝑁 is the electron affinity of AlGaN. However, 

this simple relationship between 𝜙𝑏𝑛 and 𝑊𝐹 has been proven to be incorrect for GaN-based 

devices; see Section 5.3.  

The materials used for the Schottky contacts tend to have high work functions in order to 

prevent leakage current through the gate electrode to/from the 2DEG and barrier layer defects. 

Notable materials with high work functions that are noted for use in Schottky contacts are (i) 

Ni, (ii) Au, and Pt. These materials have a work function of 5.15 eV, 5.10 eV, and 5.65 eV, 

respectively. Here, Pt has the highest work function. Although, it is not used as often in 

AlGaN/GaN based devices due to adhesion problems when deposited on GaN. A solution 

would be to deposit gold between these layers. Although, research has shown that high gate 

leakage current occurs with this metallisation [97]. Therefore, Ni would be the most suitable 

solution to deposit on the AlGaN barrier layer. To enhance this contact, a layer of Au is 

deposited on Ni in order to prevent oxidation of Ni. Hence, the most suitable and widely used 

metallisation for the Schottky contact is Ni/Au.  

The high work function of the deposited Schottky contact metallisation prevents field emission 

from occurring as only the barrier height is modulated. Thermionic emission is therefore the 

primary transport mechanism in Schottky contacts. 
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2.2.6. Advantages & Disadvantages of AlGaN/GaN HEMTs 

The mechanisms of a typically used AlGaN/GaN device, known as the AlGaN/GaN HEMT, 

has been covered. The (i) wide-bandgap (𝐸𝑔) of 3.4 eV; (ii) high breakdown electric field (𝐸𝐵𝐷) 

of 3.5 MV cm-1; (iii) high electron mobility (𝜇) of 900 cm2 V-1s-1; (iv) high electron saturation 

velocity (𝑣𝑠𝑎𝑡) of 15 × 106 cm s-1; and (v) low dielectric constant (𝜀𝑟) of 8.9 of III-N materials 

provide distinctive advantages over the conventionally used Si and even other competing 

semiconductor materials. These properties lead to superior high-power and high-frequency 

device performance [15], [120]. In order to show the advantages of AlGaN/GaN HEMTs, first 

the advantages of bulk GaN against other competing semiconductor materials is given. Then, 

the advantages and disadvantages of AlGaN/GaN HEMTs against bulk GaN is provided.  

The benefit of the wide-bandgap in III-N materials is that it allows for high electric breakdown 

field which contributes towards high-voltage (600 V) and high-temperature (600 oC) 

applications. Also, large current density can be achieved, as a result of the high 2DEG electron 

mobility. The high saturation velocity available in III-N materials is another attribute required 

for high-frequency applications. Due to the superiority of the physical properties of GaN over 

its competitors, its ability to integrate itself into applications for high-temperature and high-

frequency switching has proven valuable for the wide-bandgap semiconductor market [30], 

[121].  

2.2.6.1.  Comparison of Material Properties 

One of the primary reasons for GaN to be such a valuable pioneer in the semiconductor market 

is its ability to form a heterojunction with other III-N materials grown on top of it; namely, 

AlGaN. As a result, a channel of extremely high 2DEG sheet density, ≥1013 cm-2, is available 

at the AlGaN/GaN heterojunction, owing to the success of AlGaN/GaN-based devices. The 

performance enhancement that polarisation has in AlGaN/GaN-based devices also prevents the 

need to perform elemental doping to the device. There are a number of advantages to not doping 

the device: (i) increase in electron mobility as a result of reduced ionised impurity scattering, 

(ii) device reliability is not degraded further, and (iii) a costly and time consuming process is 

not needed. 

2.2.6.2.  Comparison of AlGaN/GaN against GaN Bulk Technology 

A comparison is made between the AlGaN/GaN heterostructure architecture and the classical 
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doped GaN bulk technology to observe its advantages and disadvantages. Advantages include: 

 In terms of electron mobility, the AlGaN/GaN heterostructure dominates the doped 

GaN bulk architecture with a significantly high value of mobility exceeding 2000 cm2 

V-1s-1 compared to the ∼440 cm2 V-1s-1 capable of the doped GaN bulk [122], [123]. 

Upon doping the GaN bulk, dopant atoms bombard the GaN material, which damages 

its crystalline structure, reducing the carrier mobility in the device. 

 Another benefit of AlGaN/GaN is its high 2DEG sheet density (> 1013 cm−2). Such 

density is too difficult to reach using doping implantation in bulk GaN. 

Although, some disadvantages include: 

 When passivating the device (e.g. Si3N4 on top of AlGaN) then great care is needed. 

Depositing the passivation layer can permanently modify strain in the AlGaN barrier 

layer, affecting the 2DEG density. 

 The gate and source/drain contacts process technologies require particularly accurate 

annealing techniques. Firstly, the source/drain contacts are processed using RTA at high 

temperature and then the gate must be placed afterwards using low temperature in order 

to form a proper Schottky contact. 

 Upon depositing the source/drain contacts onto the device, a reduction in strain occurs 

at the inner ends of the contacts that produce a significant rise in self-heating at these 

spatial locations; as discussed in Section 3.2. 

For applications that require high power, frequency and efficiency, the advantages of 

AlGaN/GaN HEMTs over bulk GaN outweigh the disadvantages. The significance of these 

disadvantages have the potential to be reduced as development of AlGaN/GaN HEMTs 

progresses. 

2.2.6.3.  Degradation Mechanisms 

The primary issue of AlGaN/GaN HEMTs that is inhibiting it from reaching mass production 

in the semiconductor market is their reliability. Recoverable degradation such as transient 

reduction in drain current (current collapse), total measured resistance between source and 

drain when the device is in ON-state (on-resistance), and ratio of output power and input power 

(efficiency) contribute towards the degradation of reliability [60]–[62]. Additionally, 
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unrecoverable degradation (i.e. access resistance of contacts, leakage current) also contributes 

towards reliability degradation. The focus of this Thesis is on identifying the kinetics of three 

degradation mechanisms: (i) self-heating, (ii) bulk trapping, and (iii) surface trapping. A 

description of each is given in the following sections. 

A. Self-Heating 

During normal device operation of AlGaN/GaN HEMTs, electrons gain significant energy and 

high velocity due to the large electric field that is induced at the drain-side gate edge. With such 

energy, the electron temperature is high, which causes electrons to bombard the crystal lattice. 

Therefore, the electrons scatter away from the 2DEG and transfer their energy to the crystal 

lattice, increasing the lattice temperature. Hence, the transport properties in AlGaN/GaN 

HEMT are degraded, reducing the device performance. Particularly in these devices, a 

significant amount of self-heating occurs within a very short time. As an example, 

 

Figure 2.22: Self-heating/cooling-down characteristics for (i) experimental measurements using a 

𝑊 = 150 µm, 𝐿𝑆𝐷 = 5 µm AlGaN/GaN TLM, and (ii) simulation data for equivalent device [124]; 

𝑉𝐷𝑆 = 20 V. Self-heating/cooling-down characteristics are shown to be near-symmetrical. 
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characterisation of self-heating at the centre of an AlGaN/GaN TLM with 150 µm contact width 

(𝑊) and 5 µm source-to-drain distance (𝐿𝑆𝐷) is given via Micro-Raman (µ-Raman) in Figure 

2.22. The temperature at the centre of the device heats up dramatically, reaching at least 70 % 

of its peak temperature within 2 µs. The cooling down process begins at 2 µs, whereby 𝑉𝐷𝑆 is 

set to 0 V. The heating up and cooling down processes are nearly symmetrical. 

An example of the self-heating effect on the output characteristics of an AlGaN/GaN TLM is 

shown in Figure 2.23. The IDS – VDS characteristics of two AlGaN/GaN HEMTs of 2 µm and 

16 µm 𝐿𝑆𝐷  are measured under DC and pulse conditions. For pulse measurements, several 

pulse widths were used ranging from 450 ns down to 5 ns. It can be seen that a significant 

enhancement in output characteristics is observed when using pulse measurements compared 

to DC measurement. As the pulse measurement is relatively short, little self-heating occurs 

when compared with DC conditions. 

B. Bulk Trapping 

Defects form in the device (i.e. threading dislocations, dangling bonds) as a result of either 

material issues or imperfections in device fabrication process. As charge carriers gain sufficient 

energy from the applied electric field within the device, they can be trapped, as illustrated in 

Figure 2.24. These trapped electrons induce potential change that, in turn, reduces the 2DEG 

 

Figure 2.23: IDS – VDS characteristics for devices of various length measured under DC and pulse 

measurements with varying pulse widths. 
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sheet density, and therefore the source-drain current. This phenomenon is more likely to occur 

at the drain-gate side of the device as opposed to the source-gate side. The mechanisms of bulk 

trapping is more complicated than what is stated here as it is temperature dependent. We 

investigate this mechanism in more detail in Section 4.5. 

C. Surface Trapping 

Similarly to the bulk trapping, electrons can get trapped at the surface of the AlGaN barrier 

layer. During normal device operation (large VDS and negative VGS), the trapped electrons near 

the gate are distributed to form what we call a ‘virtual-gate’, shown in Figure 2.24. Although 

the trapped electrons are away from the 2DEG channel, they can still modify the potential and, 

therefore, channel resistance. This phenomenon is coupled with self-heating. In Section 4.6, 

we investigate both of these mechanisms to identify their impact on device degradation.  

2.3. Non-Invasive Characterisation Techniques 

In order to begin developing a new characterisation technique for decoupling degradation 

mechanisms, particularly self-heating and charge carrier trapping, current characterisation 

techniques used for measuring degradation mechanisms are investigated. Some of these 

techniques will be used for validation purposes. In this chapter, characterisation methods for 

measuring temperature distribution (Infrared, µ-Raman and Micro-Resistance Thermal 

Detector), charge-trapping (Photoluminescence) strain (X-Ray Diffraction), 2DEG sheet 

density and electron mobility (Hall-Effect), and electrical characteristics (DC and Pulse 

 

Figure 2.24: Illustration showing a typical AlGaN/GaN HEMT and the charge trapping mechanisms 

that occur within the device (i.e. bulk trapping and surface trapping). 
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measurements) are studied. 

2.3.1. Infrared (IR) 

2.3.2. Micro-Raman (µ-Raman) 

µ-Raman spectroscopy is also used for measuring temperature distribution along the surface of 

a device. Although this technique is capable of measuring temperature at a higher resolution of 

∼0.7 µm, it has long integration times that provide measurement inaccuracies in the order of 

10 oC. In this technique, determination of lattice temperature is based on the temperature  

Infrared (IR) is a characterisation technique used for measuring temperature distribution along 

the surface of a device. The technique, which was used for temperature measurements in 

Chapter 3 allows for surface temperature measurements at a spatial resolution of 2.2 µm and a 

temporal resolution of 10 µs. An IR camera measures the radiance pattern that is given off from 

the material. As the temperature of the material increases the greater the infrared radiance 

energy emitted. This radiation is captured by a sensor array within the camera of which each 

pixel in the array reacts to the infrared energy by producing an electrical signal. The camera is 

then calibrated with a signal transfer function to convert the electrical signal produced from the 

emitted material radiance into the appropriate temperature value. As an example, Figure 2.25 

illustrates a top-down view of 2 × AlGaN/GaN HEMTs on Si that are provided by IEMN along 

with the corresponding 2D temperature distribution in the active region of an AlGaN/GaN 

HEMT. 

 

Figure 2.25: (Left) Top-down view of 2 × AlGaN/GaN HEMT on Si, provided by IEMN, with 

dimensions: 𝑊 = 250 µm, 𝐿𝐺𝐷 = 1 µm, 𝐿𝐺𝑆 = 0.5 µm. (right) 2D IR-Camera temperature 

distribution through active region of the device at 𝑉𝐺𝑆 = 0V; 𝑉𝐷𝑆 = 5V. 
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dependency of the phonon frequency (oscillations of atoms in the crystal lattice). Usually, one 

of the strongest modes available in the Raman spectrum is used for the determination of 

temperature. Figure 2.26 shows an example of (i) Raman shift measurements across the surface 

of an AlGaN/GaN device on a sapphire substrate, and (ii) corresponding Raman measurements, 

using a spectrometer XY Dilor® and a 100× objective, giving a 0.71 µm diameter spot on the 

sample surface, provide lattice temperature rise vs. applied power density. The power of the 

selected excitation is about 10 mW. Optical excitation is performed with the 488 nm line (2.54 

eV) of an argon-ion laser. Raman spectra are recorded in the backscattering geometry with 

incident and scattered lights (not polarised) propagating parallel to the c-axis. The technique is 

based on the analysis of phonon energies (i.e. the energy of lattice vibrations depending on 

temperature). Measuring the evolution in phonon energy induced by the current flowing 

through the device helps deduce the rise in the temperature in the active area focused by the 

laser beam. 

2.3.3. µ-Resistance Thermal Detector (µ-RTD) 

The electro-thermal characterisation technique, Micro-Resistance Thermal Detector (µ-RTD), 

accurately measures the channel temperature (𝑇𝐶𝐻 ) of AlGaN/GaN HEMTs with an error 

margin of 4.4 oC under a range of bias conditions [125]. It makes use of placing an additional 

terminal, the µ-RTD terminal, on top of the devices SiO2 passivation layer, Figure 2.27. Firstly, 

IDS – VDS measurements are taken under various gate voltages whilst the µ-RTD terminal is in 

open circuit. Then IDS – VDS measurements are taken but with a small current through the μ-

 

Figure 2.26: (left) Raman shift across surface of AlGaN/GaN device on sapphire substrate. (right) 

Corresponding lattice temperature rise versus applied power density. The inset shows IDS – VDS 

characteristics. 
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resistance thermal detector (𝐼𝑅𝑇𝐷 = 0.3 mA) passing through the µ-RTD terminal; enough to 

show variation without causing additional self-heating and no electrical perturbation in the 

device. This provides the calibration of the µ-RTD terminal by providing similar I – V 

characteristics and proves functionality of the µ-RTD terminal. A second measurement is taken 

under various base-plate temperatures whereby the resistance of the µ-RTD is found and then 

compared with a µ-RTD reference temperature [125]. Lastly, IDS – VDS sweeps are taken at 

different gate voltages whilst simultaneously measuring µ-RTD resistance to get 𝑇𝐶𝐻 to finally 

provide an IDS – VDS – TCH characteristic. The device under test (DUT) and testing platform 

used for this entire process is illustrated in Figure 2.27. These measurements may be validated 

by applying the IR and µ-Raman techniques to a similar device without the µ-RTD contact. 

2.3.4. Photoluminescence (PL) 

Photoluminescence (PL) is a tool used to observe and study the properties of defects in the 

device. The procedure for photoluminescence begins with illuminating the material with light 

that is above the bandgap of the material (>3.4 eV). Here, light is captured by electrons in the 

valence band and are excited to the conduction band, emitting photons of energy that make up 

the difference of the valence band energy and illuminating light energy, Figure 2.28. 

 

Figure 2.27: Design of DUT and testing platform for temperature measurements using the 

integrated µ-RTD [126]. 
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Conduction band electrons also capture the illuminating light where they emit excess energy 

and return to the bottom of the conduction band. Due to the valence band electrons becoming 

excited, a freely moving hole is left in the valence band. An acceptor that contains energy within 

the bandgap can attract and capture the hole turning it into a bound hole. From this, 

recombination of the bound hole and a conduction band free electron occurs whereby energy 

is released in the form of photons and phonons; Photon emission is known as PL. Phonons emit 

the remaining energy and are not of concern in this characterisation technique. There are several 

luminescences with different wavelengths including blue, yellow, red luminescence (BL, YL, 

RL) that are present due to Ga and N vacancies, oxygen or deep level impurities, and 

amorphous phases [127]. In Figure 2.28, the PL process is illustrated along with an example of 

PL intensity vs. photon energy that results from this process. 

2.3.5. X-Ray Diffraction (XRD) 

X-Ray Diffraction (XRD) is used to measure strain in the AlGaN barrier layer crystal lattice or 

in the GaN buffer. The device is placed on an XYZ stage X-ray diffractometer of 50 nm lateral 

resolution. A zone plate setup focuses a 180 arc sec divergence beam to a quasi-circular 

illumination of X-rays of around 220 nm radius that the device is exposed to. The interaction 

of the X-rays with the material’s crystal lattice causes diffraction patterns visible by scanning 

the arc of radius around the device. The device is then shifted on the mount after each 

measurement to cover the entirety of the device; the location of the illumination spot on the 

 

Figure 2.28: (left) PL process schematic; (right) equivalent PL intensity with respect to photon 

energy example. 
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device is monitored by Ga-K fluorescence intensities that are measured simultaneously with 

diffraction pattern shifts. As a material is strained, the lattice inter-planar spacing changes, 

which causes a shift in diffraction pattern of the X-rays. These shifts are measured by a charge-

coupled device (CCD) detector, shown in Figure 2.29. The strain is then deduced from the 

change in inter-planar spacing via mathematical relationships that involve comparing 

unstressed lattice inter-planar spacing with strained inter-planar spacing [128]. 

2.3.6. Electrical Characterisation 

Electrical characterisation techniques are typically used as a cost effective method of measuring 

various device characteristics including charge carrier density, mobility, I – V and C – V 

characteristics, transient current, defect density, contact resistivity. In this section, we 

investigate the commonly used Hall-effect technique used to measure charge carrier density 

and mobility as well as generic techniques typically used for current characterisation. 

2.3.6.1.  Hall-Effect 

The Hall-effect technique is used to measure the 2DEG channel density and mobility. With 

current (𝐼 ) flowing through the device, a magnetic field (𝐵 ) perpendicular to the device is 

applied resulting in a transverse current. The resulting Hall voltage (𝑉𝐻) is then measured across 

the device. Resistivity (𝜌) is then measured using the van der Pauw measurement technique 

[129]. Both 𝑉𝐻 and 𝜌 measurements are repeated numerous times and then averaged due to 

their small values. With these four parameters as well as a measurement for wafer thickness  

 

Figure 2.29: XRD CCD capture of an AlGaN/GaN device structure, showing AlGaN and GaN 

reflections in terms of CCD diffraction intensity. 
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 (𝑡𝑡), the following formula is used to calculate Hall mobility (𝜇𝐻) and 𝑛𝑠: 

𝜇𝐻 =
|𝑉𝐻|

𝐼𝐵𝜌
 (2.11) 

𝑛𝑠 =
𝐼𝐵

𝑞|𝑉𝐻|
 (2.12) 

Figure 2.30 shows the 2DEG 𝑛𝑠  and 𝜇𝑛  with respect to temperature. The 2DEG density 

remains constant for temperatures below 450 K (worst-case). Due to the different piezoelectric 

temperature coefficients of AlGaN and GaN, an increase in temperature (> 450 K) leads to an 

enhancement of the strain, resulting in greater 2DEG density. This effect is known as 

pieroelectricity whereby the piezoelectricity changes with temperature. As temperature 

increases, the electron mobility decreases due to the lattice scattering and onset of polar optical 

phonon emission. However, this phenomenon reduces at higher temperatures. The mobility is 

the only quantity that strongly depends on lattice temperature. 

2.3.6.2.  DC Measurements 

Typically, I – V characteristics are measured using DC measurements. This technique involves 

applying a DC voltage applied to all contacts of a device (i.e. drain, source, and gate contact) 

for a long period of time before measuring the current. This long period allows for all current 

 

Figure 2.30: 2DEG sheet density and electron mobility vs. Temperature. The increase in 2DEG 

density (T > 450 K) is due to additional strain caused by pieroelectricity. Hall mobility, 𝜇𝑛, 

decrease is due to more electron scattering as temperature increases. 
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transients to settle, providing a signal that will not vary around the time that the signal is 

measured. The measurements are typically performed using a sigma-delta or integrating-type 

analog-to-digital converter (ADC). However, ambient noise is present in the power lines during 

measurement. In order to eliminate this noise, the signals are taken over numerous power line 

cycles and are then averaged in order to improve signal accuracy. 

2.3.6.3.  Pulse Measurements 

Pulse signals provide a large number of data samples within a small time. Due to the short 

intervals between signals, device damage is prevented even at high voltages. One of the 

primary mechanisms that can degrade or damage the device over a short space of time is self-

heating, as previously described in Section 2.2.6.3. Typically, for measuring I – V 

characteristics using this technique, a duty cycle of <10 % is applied in order to minimise the 

self-heating within the device. As a result, the current in I – V characteristics of pulsed 

measurements is larger than that of DC measurements, showing the performance of devices 

operating at high frequency. This measurement technique is also beneficial for devices capable 

of high power. The instruments used for applying high power using pulsed measurements are 

far more capable of reaching higher power than that of DC measurements due to the short 

measurement time. In addition, pulsed measurements are capable of measuring transient 

current with very short intervals, a beneficial technique which DC measurements are unable to 

perform. To fit measurements into these short windows, sigma-delta ADCs are run at sub-

power-line interval integration times; sometimes, the even faster successive approximation 

register (SAR) type ADCs are used. However, these measurements are far noisier than DC 

measurements which can be an issue when high accuracy readings are required. 

2.3.7. Characterisation Technique Comparison 

The optical techniques IR and µ-Raman are commonly used for measuring temperature 

distribution. µ-Raman has the advantage of providing better spatial resolution (0.7 µm) 

compared to IR (∼2.2 µm). However, a significant disadvantage to using the µ-Raman 

technique is that it takes much more time and requires a higher applied power density than IR. 

Therefore, it is not needed for temperature measurements of large devices. Devices grown on 

sapphire are difficult to be characterised using IR due to the transparency of Al2O3. On the 

other hand, devices grown on SiC are difficult to characterise using µ-Raman, due to the 
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bidirectional shift of the Raman signal with temperature that occurs with SiC, which 

complicates the calibration step.; with thermal-electrical characterisation, µ-RTD, these 

problems do not occur. Although, the µ-RTD technique does not provide a distribution of 

temperature across the device, an accurate peak temperature beneath the µ-RTD contact can be 

obtained. PL is commonly used to characterise defects in a material due to the high sensitivity 

to discrete electronic states. The benefit of this technique is that there is no change in results 

from when previously exposed to X-ray irradiation used in the XRD technique. Although the 

XRD technique is considered to measure surface strain, X-rays that are illuminated onto the 

device penetrate a few micrometers deep into the material. So, several values of diffraction 

pattern shift occur at one coordinate along the device surface with respect to depth of 

penetration. As the measurements are presented in 2D across the surface, the range of shift 

values are averaged and provide one value of strain at each coordinate on the surface. Therefore, 

shift/strain shown at the surface has some error due to coupling with shift/strain deeper in the 

material. The Hall-effect technique is commonly used for sheet density and electron mobility 

measurements as it is not affected by ambient conditions due to its using a magnetic field to 

induce traverse current; it is highly reliable and repeatable, and operates at a wide range of 

temperatures. 

 

Figure 2.31: Comparison of 𝐼𝐷𝑆 – 𝑉𝐷𝑆 characteristics with DC measurement (blue) and Pulse 

measurement (red) for 𝑉𝐺𝑆𝑄 = -5 V and 𝑉𝐷𝑆= 0 V. 
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An important characteristic that defines the power capabilities of HEMT devices is the drain-

source current (𝐼𝐷𝑆 ) vs. drain-source voltage (𝑉𝐷𝑆 ). Figure 2.31 compares the IDS – VDS 

characteristics of an AlGaN/GaN HEMT under DC (blue) and pulse (red) measurements. It is 

clear that current collapse occurs in DC measurements. This is primarily due to self-heating 

and charge trapping. The use of pulse measurements minimises this degradation due to the 

device being set to OFF-state for a period of time between each measurement. Current 

degradation due to self-heating and charge trapping still occurs during pulse measurements, 

although less than in DC, as described in Section 2.3.6. The decoupling of self-heating and 

charge trapping is investigated using pulse measurements in Chapter 4. 

2.4. Development Challenges 

The superior performance of AlGaN/GaN HEMTs is hampered by serious reliability issues, 

which remain an open problem that is holding back their widespread commercial and industrial 

development. These reliability issues stem from degradation mechanisms such as: (i) self-

heating effects, that significantly impact the transport properties in the 2DEG, (ii) charge 

trapping effects, that are responsible for reducing device lifetime and reliability, (iii) 

source/drain (S/D) Ohmic contact resistances increase during device operation, and (iv) gate 

Schottky contact leakage current and barrier height, are controversial and largely unknown 

[60]–[62]. These accelerating factors are behind device performance degradation and persist to 

be limiting reliability factors. Maintaining high performance and reliability of the S/D Ohmic 

and gate Schottky contacts in AlGaN/GaN HEMTs is a significant challenge, particularly at 

high operating voltages, which hinders progress in a large-scale deployment of the technology 

in applications [33], [44], [45]. 

The strong coupling of self-heating and charge trapping mechanisms, under normal device 

operation, makes the quantitative contribution of each mechanism indistinct. This key 

performance and reliability information poses a significant challenge, particularly for 

AlGaN/GaN HEMTs due to their high operating temperature and relatively high density of 

traps, and impedes the device performance progress, an important step before large-scale 

deployment can be attained [60]–[62], [130]. 

Transient measurements, such as fast pulse characterisations described in Section 2.3.6.3, are 

often used to reduce self-heating effects in the device when investigating trapping effects [131]. 
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However, it has been shown that the temperature at the channel of a conventional AlGaN/GaN 

HEMT can reach 70% of its maximum value within the first 2 µs, after the device is switched 

ON [124], [132], [133]. Lowering the applied biases conditions to prevent temperature rise is 

another option to decouple traps from self-heating. However, this methodology is unable to 

provide vital information about traps kinetics at normal device operation. Lack of standard 

characterisation techniques for degradation mechanisms’ decoupling plays a major role in 

holding back the optimisation of III-N process and device technology, an important step before 

large-scale deployment can be attained [60]–[62], [130]. Developing such a technique and re-

examining the impact each degradation mechanism has on the device, during normal device 

operation, will be the focus of this Thesis. This technique will contribute towards understanding 

the origins of device failure and the kinetics of the degradation mechanisms. 

In addition, to achieve high performance, Ohmic and Schottky contacts are required to be 

optimised to provide lower contact resistance ( 𝑅𝐶 ) and higher energy barrier ( 𝛷𝑏𝑛 ), 

respectively. Increasing the Al concentration in the barrier and/or using AlN exclusion layer is 

known to increase 2DEG confinement and to enhance 2DEG density and mobility, which 

enhances performance [134], [135]. However, it results in increased 𝑅𝐶  due to low metal 

diffusion beneath the metal contact [136], [137]. In Section 5.2, we propose a fabrication 

process of ohmic contacts to reduce 𝑅𝐶 of AlGaN/GaN HEMTs with a high Al concentration, 

whilst avoiding implantations that cause HF-traps and gate leakage. The optimisation of 

Schottky contacts is crucial for gate control in GaN-based HEMTs in order to achieve high 

frequency performance, good linearity and low leakage current. With the existing Schottky 

contact metallisation processes, the leakage current and the barrier height can be improved but 

needs several difficult operations, described in Section 5.3.1, before achieving this. Therefore, 

we propose a new and simple process of forming a TiN-based Schottky contact on an AlGaN 

barrier. 
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In the first section of this chapter, we investigate the self-heating and strain mechanisms in 

AlGaN/GaN HEMTs using Infrascope temperature mapping system (IR) accompanied by 

synchrotron radiation-based High-Resolution X-Ray Diffraction (HR-XRD) measurements 

and physically based TCAD simulations. This unique approach demonstrates that compressive 

and tensile strain around S/D contacts affects temperature distribution during device operation 

and limits its performance. In the second section of this chapter, we study electro-thermal 

behaviour of scaled AlGaN/GaN TLM heterostructures with low resistive Ohmic contacts to 

identify the relationship between device geometry and polarisation within AlGaN/GaN-based 

devices. 

3.1. Structure of Investigated Devices 

The investigated AlGaN/GaN-based device structure has been grown by molecular beam 

epitaxy on High-Purity HP-Si(111) substrate (Figure 3.1). The following device architecture 

was fabricated at the IEMN of the University of Lille. It consists, from the substrate to the top 

surface, of low temperature AlN(40 nm)/GaN(250 nm)/AlN(250 nm) nucleation layers, a 1.7 

µm Al0.10Ga0.90N back-barrier to reduce leakage current in the buffer and to improve the carrier 

 

Figure 3.1: AlGaN/GaN-based device structure and measured electron density profile of the 

investigated wafer, GaN(1 nm)/Al0.32Ga0.68N(25 nm)/GaN(15 nm)/Al0.10Ga0.90N(1.7 µm)/NL/HP-

Si(111), where NL are nucleation layers that consist of AlN(40 nm)/GaN(250 nm)/AlN(250 nm). 
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confinement of the 2DEG. A channel is made of a 15 nm thick unintentionally doped GaN 

buffer followed by a 25 nm undoped Al0.32Ga0.68N barrier and, finally, a 1 nm GaN cap layer. 

Room temperature Hall measurements yield a 2DEG electron mobility of 1750 cm2V-1s-1 and 

R□ = 310 Ω/□. The CV-technique revealed an electron sheet density of 1.18 × 1013 cm-2 in the 

buffer. The fabrication process flow is similar to that in [107]. To reduce the contact resistance, 

the S/D terminals are formed by rapid thermal annealing of an evaporated Ti(10 nm)/Al(200 

nm)/Ni(40 nm)/Au(100 nm) multilayers metallisation scheme at 870 oC for 30 s under nitrogen 

atmosphere. The S/D contacts resistance and specific resistivity are 0.39 Ω.mm and 3.8 × 10-6 

Ω.cm2, respectively. The devices are electrically isolated by He+ ion multiple implantations.  

To reduce trapping effects and dispersion, the surfaces of the devices are N2O pre-treated for 

2 min followed by SiO2(100 nm)/Si3N4(50 nm) bi-layer passivation, performed by plasma-

enhanced chemical vapour deposition at 340 oC. The SiO2(100 nm)/Si3N4(50 nm) bi-layer is 

opened by using a CHF3/CF4 reactive ion etching plasma. The used gate metallisation scheme 

is Ni(5 nm)/Pt(25 nm)/Ti(25 nm)/Mo(30 nm)/Au(250 nm). The electrical I – V 

characterisations were performed at DC and dark conditions at University of Swansea using 

the Agilent B1500A framework. The trace of drain current is reproducible showing that no 

permanent degradation of drain current occurs from the experiment, only recoverable 

degradation, i.e., charge trapping and self-heating.  

3.2. Strain-Reduction Induced Rise in Channel Temperature at Ohmic Contacts 

In this work, we investigate the channel temperature distribution in AlGaN/GaN-based devices 

using IR temperature mapping system accompanied by HR-XRD measurements and physically 

based TCAD simulations. We demonstrate that compressive and tensile strain around S/D 

affects temperature distribution during device operation which limits device performance. An 

overview of the used devices and performed experiments is first summarised. Then, 

temperature profiles in the device under different configurations as well as the physics behind 

the temperature rise at the source/drain contacts is examined. 

3.2.1. Experimental Procedure 

3.2.1.1.  Device Performance 

The IDS – VDS characteristics of the used 100 µm wide AlGaN/GaN TLMs with different 

source-to-drain distances, 𝐿𝑆𝐷 = 10 µm (short TLM) and 𝐿𝑆𝐷 = 30 µm (long TLM), are shown 
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in Figure 3.2. A lower current and a larger resistance are observed for the long TLM. 

3.2.1.2.  Infrared Camera 

To measure the temperature profile, the Infrascope temperature mapping system from IEMN 

of the University of Lille, equipped with 500 × 500 InSb detectors array, is first calibrated. A 

high emissivity layer is coated over the device and surface radiation of the unbiased 

AlGaN/GaN device is measured, whilst increasing the temperature from 50 oC to 200 oC with 

a step of 15 oC using a heated-stage to maintain constant uniform temperature [107], [138]. The 

surface temperature is then measured from the emissivity by comparing it with the instrument 

calibration curve (not shown). After the calibration step, each device is first placed on a 

constant temperature platform (40 oC or 45 oC) and biased at DC conditions using Agilent 

B1500A framework. Then, thermal imaging measurements are performed using the calibrated 

Infrascope system. Pixel resolution of the obtained IR image is about 2.3 µm, giving a total 

field of view of about 1 mm × 1 mm. This technique is based on measuring the IR radiations 

emitted at the top surface of the device that are proportional to the temperature. 

3.2.1.3.  High-Resolution X-Ray Diffraction 

To measure the strain profile in the AlGaN barrier layer, synchrotron radiation-based HR-XRD 

 

Figure 3.2: Measured IDS – VDS characteristics of the gateless AlGaN/GaN TLMs. The source-to-

drain distance of the used TLMs are 𝐿𝑆𝐷 = 10 µm (short TLM) and 𝐿𝑆𝐷 = 30 µm (long TLM). 
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is used. This techniques uses 10.4 keV energy at the 2 – ID – D micro-diffraction beamline. The 

sample device is mounted on an XYZ stage with a 50 nm resolution. The location of the beam 

spot was monitored by means of simultaneous measurement of Ga–K fluorescence intensities 

and the diffraction data were collected by a charge-coupled detector. The size of the quasi-

circular beam spot is ≈220 nm with 180 arc sec divergence. 

3.2.1.4.  Simulation Methodology 

The electrostatic (i.e. potential and electric field distribution) of the used devices have been 

investigated by Drift-Diffusion (DD) simulations. The details of the used device simulation 

technique can be found in [139]–[144]. In the past, this simulation technique has been 

successfully used to predict AlGaN/GaN based device architectures grown on various 

substrates (i.e., Si, 4H−SiC, diamond, Al2O3). The transport parameters such as electron drift 

velocity, energy relaxation time, and electron effective mass are obtained from Monte Carlo 

simulation runs at different lattice temperatures [144]. Both simulated I – V characteristics and 

 

Figure 3.3: I – V characteristics and operating temperatures for different device structures (gated 

and gateless), showing good agreements between experimental data and our simulation results. 
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calculated temperatures have been compared to experimental I – V characteristics and 

temperature measurements, demonstrating a good agreement, as shown in Figure 3.3. 

Moreover, this simulation technique has been adapted to deal with both gated and gateless 

AlGaN/GaN devices. 

3.2.2. Temperature distribution in AlGaN/GaN TLMs 

3.2.2.1.  Source-to-Drain Thermal Coupling 

Figure 3.4 shows the IR measured temperature distributions along the surface of the short and 

long TLMs, 𝐿𝑆𝐷 = 10 µm and 𝐿𝑆𝐷 = 30 µm, at 𝑉𝐷𝑆 = 2 V to 12 V by step of 2 V. For the long 

TLM, temperature peaks are observed at the inner ends of the S/D contacts, for all applied 

biases (Figure 3.4(b)). These temperature peaks merge when 𝐿𝑆𝐷  decreases as a result of 

temperature coupling (Figure 3.4(a)). For 𝐿𝑆𝐷  ≤ 10 µm, the amount of thermal coupling 

between the source and the drain sides is even larger making it difficult to observe the 

temperature peaks at the inner end of the Ohmic contacts (not shown). Note that this thermal 

coupling induced temperature rise can significantly impact the device performance through an 

increase in the contact access resistance and electron mobility degradation, particularly for 

small devices, as a result of the source-drain thermal coupling. 

 

Figure 3.4: Measured temperature profiles along the top surface of the gateless AlGaN/GaN 

structures at different drain voltages for (a) short TLM (LSD = 10 µm) and (b) long TLM (LSD = 30 

µm). 
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Unlike in the long TLM, the channel temperature is at its maximum in the centre of the short 

TLM (𝐿𝑆𝐷  = 10 µm). This can be explained by a heat spread angle and a strong thermal 

coupling between source and drain, as illustrated in Figure 3.5(a). The temperature in the 

middle of the short TLM is much higher than at the inner ends of Ohmic contacts. To 

demonstrate the low thermal coupling in the long TLM (𝐿𝑆𝐷 = 30 µm), we have artificially 

modified the measured temperature profile by reducing the source-to-drain distance from 30 

µm to 10 µm (Figure 3.5(b)). It can be seen that the resultant temperature profile (modified 

 

 

Figure 3.5: (a) Illustration of the heat spreading angle and the source-to-drain thermal coupling in 

the short and long TLMs. (b) Measured temperature profile along the top surface of the gateless 

AlGaN/GaN structure at 𝑉𝐷𝑆 = 12 V for the long TLM (𝐿𝑆𝐷 = 30 µm). The original measured data 

are compared to the modified data to show a very negligible thermal coupling between the inner 

ends of Ohmic contacts in a long 𝐿𝑆𝐷 device. 
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data) is slightly larger than the original data but still present two peaks, in contrast with the 

measured temperature of the short TLM (𝐿𝑆𝐷 = 10 µm). 

The device temperatures of the AlGaN/GaN TLMs are plotted against dissipated power density 

in Figure 3.6. The dissipated power density is controlled via 𝑉𝐷𝑆. For a given dissipated power 

density, the temperature is higher in the short TLM (𝐿𝑆𝐷 = 10 µm) due to (i) a higher electric 

field [139] and (ii) a stronger thermal coupling between source and drain sides (Figure 3.5(a)). 

3.2.2.2.  Thermal Resistance 

To get a rough estimate of the thermal resistance of each device, we have employed the 

analytical thermal model described by the following equation [145], [146]:  

𝑇 = 𝑇𝑆𝑈𝐵 + 𝑅𝑇𝐻 × 𝑃𝐷𝐼𝑆𝑆 (3.1) 

where 𝑇  is the channel temperature, TSUB is the substrate temperature (45 oC), 𝑅𝑇𝐻  is the 

thermal resistance, and 𝑃𝐷𝐼𝑆𝑆 is the dissipated power, which is proportional to electric field (𝐸), 

 

Figure 3.6: Evolution of the channel temperature versus the dissipated power density for the 

AlGaN/GaN TLMs (𝐿𝑆𝐷 = 10 µm and 𝐿𝑆𝐷 = 30 µm). The Max Temperatures are extracted from the 

peaks at the vicinity of S/D contacts for the long TLM and at the centre of the device for the short 

TLM. The Min Temperature corresponds to the value of temperature at centre of the long TLM 

(𝐿𝑆𝐷 = 30 µm). 
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drain current (𝐼𝐷𝑆) and source-to-drain distance (𝐿𝑆𝐷):  

𝑃𝐷𝐼𝑆𝑆 ≈ 𝐸 × 𝐼𝐷𝑆 × 𝐿𝑆𝐷 (3.2) 

According to this model, the increase of 𝐿𝑆𝐷 should lead to an increase in temperature, due to 

a larger amount of material for heat to dissipate through. This is in disagreement with 

experimental observations. Therefore, the temperature increase with the reduction of 𝐿𝑆𝐷 is 

mainly caused by the thermal resistance. With respect to the heat spreading angle model [147]–

[149], as illustrated in Figure 3.5(a), the thermal resistance increases with decreased 𝐿𝑆𝐷 due to 

the lower substrate volume for heat to dissipate. The extracted thermal resistances are 68 oC 

W-1 and 38 oC W-1 for short (𝐿𝑆𝐷 = 10 µm) and long (𝐿𝑆𝐷 = 30 µm) TLMs, respectively. These 

values of 𝑅𝑇𝐻  are within the typical range of values [138], [150]. Here, we have used the 

maximum temperatures that occurs at (i) the inner-ends of the source and drain terminals for 

the long TLM (𝐿𝑆𝐷 = 30 µm) and (ii) at the centre of the device for the short TLM (𝐿𝑆𝐷 = 10 

µm), due to thermal coupling. When using temperature values in the middle of the TLM with 

𝐿𝑆𝐷 = 30 µm (minimum temperature), the extracted 𝑅𝑇𝐻 is equal to 9.0 oC W-1, over three times 

smaller than at the inner-ends of the source and drain terminals. This is an indication of a non-

uniform distribution of the electric field between source and drain contacts. 

3.2.2.3.  Strain Relationship with Self-Heating 

It has been reported that the S/D Ohmic contacts process annealing and device operation induce 

mechanical stress due to (i) a mismatch in thermal expansion coefficients of III-N and 

Ti/Al/Ni/Au metallisation scheme, and (ii) an exacerbation of inverse piezoelectric effect at 

high temperatures [151]–[153]. These effects result in a change of strain at the vicinity of metal 

contacts. The deformation of c-plane nitride crystal under compressive and tensile strains [154] 

around the contacts is illustrated in Figure 3.7(b). 

To support the above theory, the strain relaxation in the AlGaN barrier layer of an unbiased 

device is measured using synchrotron radiation-based HR-XRD [155]. The measured strain 

profile, given in Figure 3.7(a), reveals a reduction of strain at the inner ends of S/D contacts. 

The strain reduction at the inner ends of the contacts reduces the electron density at these 

locations which, in turn, impacts the potential distribution and increases the electric field 

locally [156], hence an increase in channel temperature. Some preliminary HR-XRD data shows 

a reduction of strain below the gate terminal as well (Figure 3.8). Further investigation  
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of the heating beneath the gate will be the subject of future works. 

The impact of the strain reduction, at the inner ends of S/D Ohmic contacts, on the device 

electrostatic has been investigated by DD simulations and HR-XRD measured data. The details 

of the used device simulation technique can be found in [139]–[144]. In the past, this simulation 

 

 

Figure 3.7: (a) Measured strain in the channel along the lateral direction of an AlGaN/GaN TLM 

using synchrotron radiation-based HR-XRD, showing a reduction of strain at the inner ends of S/D 

contacts. (b) The schematic of strain distribution at the vicinity of S/D Ohmic contacts. 

 

Figure 3.8: Measured strain in the channel along the lateral direction of an AlGaN/GaN HEMT 

using HR-XRD. 
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technique has been successfully used to predict AlGaN/GaN based device architectures grown 

on various substrates (i.e., Si, 4H–SiC, diamond, sapphire). The transport parameters such as 

electron drift velocity, energy relaxation time, and electron effective mass are obtained from 

Monte Carlo simulation runs at different lattice temperatures [144]. Both simulated I – V 

characteristics and calculated temperatures have been compared to experimental I – V 

characteristics and temperature measurements, demonstrating a good agreement [139]–[142]. 

Moreover, this simulation technique has been adapted to deal with both gated and gateless 

AlGaN/GaN devices. 

 

Figure 3.9: DD simulation results of the short TLM (𝐿𝑆𝐷 = 10 µm), when taking into account the 

HR-XRD measured strain. (a) Lateral 2DEG profile overlapped with potential distribution at 𝑉𝐷𝑆 = 

0 V in the channel of the TLM. (b) Vertical current density overlapped with potential distribution at 

𝑉𝐷𝑆 = 12 V in the channel of the TLM. 
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The lateral 2DEG profile overlapped with corresponding potential distribution at 𝑉𝐷𝑆 = 0 V, 

when taking into account the measured strain, are shown in Figure 3.9(a). At least 25 % 

reduction in 2DEG density is observed at the inner ends of S/D contacts, as a result of strain 

degradation. Figure 3.10(a) and (b) compare the simulated electric field distributions with 

measured temperature profiles under 𝑉𝐷𝑆 = 12 V for both short (𝐿𝑆𝐷 = 10 µm) and long (𝐿𝑆𝐷 = 

 

Figure 3.10: simulated electric field distributions and measured temperature profiles at 𝑉𝐷𝑆 = 12 V 

for (a) short TLM (𝐿𝑆𝐷 = 10 µm) and (b) long TLM (𝐿𝑆𝐷 = 30 µm). 
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30 µm) TLMs, respectively. Electric field peaks that occur at the inner ends of the S/D contacts 

are nearly three times larger than that at the middle of the device and directly correlate with the 

measured temperature profiles. As the electric field and the drain current increase 

proportionally with 𝑉𝐷𝑆, the channel temperature increases near the Ohmic contacts. With the 

proportional relationship between electric field and temperature, the degradation of strain 

significantly impacts temperature peaks within the device. Furthermore, the vertical component 

of the current density, simulated by DD and given in Figure 3.9(b), shows that the majority of 

current flows in/out of the 2DEG through a small portion of the S/D contacts as suggested by 

Trilayer-TLM model Ohmic contacts [157]. This attribute could be a cause of a further strain 

degradation and channel temperature increase. 

3.2.3. AlGaN/GaN HEMT 

3.2.3.1.  Sources of Self-Heating 

It was not possible to observe the temperature peaks at the vicinity of the Ohmic contacts in 

AlGaN/GaN HEMTs due (i) to the strong thermal coupling between contacts when 𝐿𝑆𝐷 ≤ 10 

µm, as demonstrated in the previous section; and (ii) to the hot-spot at the end of the gate, as 

described in this section. However, a temperature rise near source and drain contacts still takes 

place in HEMTs, since the fabrication process of Ohmic contacts in gated and gateless devices 

are exactly the same. We shall therefore expect to observe temperature rise near the S/D 

contacts in HEMTs as in TLMs. The ID – VG characteristics of two AlGaN/GaN HEMTs with 

 

Figure 3.11: Measured ID – VG characteristics of single and two-finger gate AlGaN/GaN HEMTs at 

𝑉𝐷𝑆 = 5 V. The device dimensions are: 𝐿𝑆𝐺 = 1.0 µm, 𝐿𝐺 = 0.5 µm, 𝐿𝐺𝐷 = 3.5 µm. 
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different configurations (single or two-finger gate) are presented in Figure 3.11. The two-finger 

gate device ‘B’ outputs less current than single-finger gate HEMT ‘A’, a point to be noted in 

discussion. The same temperature measurement technique is applied to a two-finger gate 

HEMT with 𝐿𝐺𝐷 = 2.5 µm and 𝑊 = 2 × 150 µm (Figure 3.12(a)). Since 𝐿𝑆𝐷 of this device is 

less than 10 µm, the peaks of temperature at the inner ends of S/D contacts are merged together. 

This profile is similar to what has already been reported in literature using techniques such as 

µ-Raman [158]. The notch between the source and drain sides is caused by the metal gate. In 

addition, a higher temperature peak can also be seen at the end of the gate (toward the drain 

side, as marked by TSD in Figure 3.12(b)). This peak may be slightly undervalued, due to the 

limited resolution of the IR System. The drain-side temperature increase as 𝑉𝐺𝑆 increases can 

be explained by the temperature coupling with that of the neighbouring HEMT and by the high 

electron kinetic energy at the end of the gate [159]. The maximum device temperatures of the 

AlGaN/GaN HEMTs are plotted against dissipated power density in Figure 3.13(a). The 

dissipated power density is controlled via 𝑉𝐺𝑆 and 𝑉𝐷𝑆. The presence of temperature coupling 

between two neighbouring HEMTs (two-finger gate HEMT ‘B’: 𝑊 = 2 × 150 µm), due to heat 

spreading angle as illustrated in Figure 3.13(b), leads to channel temperature increase, when 

compared with a single-gate HEMT (‘A’: 𝑊 = 1 × 150 µm) [160]. As a result, the two-finger 

gate exhibits lower drain current, as shown in Figure 3.11 [140], opposite to the expected higher 

current without considering thermal coupling. This experimental observation is in good 

agreement with heat spreading angle models [147]–[149]. The main cause of temperature rise in 

AlGaN/GaN HEMT is, therefore, the high value of the electric field at the end of the gate 

toward the drain side. This electric field peak is observed through DD-simulation, Figure 3.14, 

which also shows increased electric field with reduced source-to-drain distance that increases 

the self-heating further. The electrons that enter the device via the source terminal and crystal 

lattice of AlGaN and GaN gain significant energy at the drain-side gate edge, as shown in 

Figure 3.15, due to the large electric field peak in the local area. Consequently, a non-uniform 

distribution of dissipated power produces a hot spot of temperature to be formed at this 

location, Figure 3.16. This phenomenon happens regardless of the strain reduction near the 

contact [161], [162]. Therefore, the physics behind temperature rises near the gate and near S/D 

contacts are very different. Both mechanisms contribute to the higher temperature at the drain 

side in AlGaN/GaN HEMTs. Further investigation will be needed to separate the thermal 

effects of the two mechanisms in this device. 
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Figure 3.12: (a) Layout of two-finger gate AlGaN/GaN HEMTs. (b) Measured temperature profiles 

at 𝑉𝐷𝑆 = 5 V and at different gate voltages (-6 V to 2 V; step 1 V) along the lateral position (Cut: 

aa’). (c) Temperature distribution at 𝑉𝐷𝑆 = 5 V and 𝑉𝐺𝑆 = -2 V along the width position (Cut: bb’). 

The device dimensions are: 𝐿𝑆𝐺= 1.0 µm, 𝐿𝐺 = 0.5 µm, 𝐿𝐺𝐷 = 2.5 µm. 
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Figure 3.13: (a) Evolution of the maximum channel temperature versus the dissipated power 

density of single and two-finger gate AlGaN/GaN HEMTs (‘A’: 𝑊 = 1 × 150 µm; and ‘B’: 𝑊 = 2 

× 150 µm. The device dimensions are: 𝐿𝑆𝐺 = 1.0 µm, 𝐿𝐺 = 0.5 µm, 𝐿𝐺𝐷 = 3.5 µm. (b) Illustration of 

the heat spreading angle in single and two-finger gate AlGaN/GaN HEMTs. 



 

CHAPTER 3 STRAIN IMPACT ON SELF-HEATING IN AlGaN/GaN HEMTS 

 

 

74 

 

 

 

 

 

Figure 3.14: Simulated electron temperature (electron energy) distribution in an AlGaN/GaN 

HEMT. 

 

Figure 3.15: Numerical simulation of electric field distribution in an AlGaN/GaN HEMT. 
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3.2.3.2.  Thermal Management Issue 

When implementing these devices into high-power system applications that require a large 

device density, thermal effects become an issue for the performance of these devices. As 

previously discussed, temperature that dissipates out of the device can increase the temperature 

of a neighbouring device if the temperature is high enough and the spacing between devices is 

too small. With large device density the accumulation of heat transfer between neighbouring 

devices can reduce the device performance significantly due to the large increase in 

temperature, thus, increasing the current collapse within each device. This shows the 

importance of finding solutions to reduce the self-heating within these devices whilst 

maintaining their high power and high frequency capabilities. 

3.3. Relationship between Device Size and Polarisation in AlGaN/GaN-based 

Devices 

The interplay of self-heating and polarisation affecting resistance is then studied in 

AlGaN/GaN TLM heterostructures with a scaled source-to-drain distance. This work is based 

on meticulously calibrated TCAD simulations against I – V experimental data using an electro-

thermal model. The electro-thermal simulations show hot-spots (with peak temperature in a 

range of ~566 K – 373 K) at the edge of the drain contact due to a large electric field. The 

electrical stress on Ohmic contacts reduces the total polarisation, leading to the 

inverse/converse piezoelectric effect. This inverse effect decreases the polarisation by 7 %, 10  

 

Figure 3.16: Lateral temperature profiles between source and drain contact of an AlGaN/GaN 

HEMT; measured using µ-Raman left, simulated right. 
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%, and 17 % during a scaling of the source-to-drain distance in the 12 µm, 8 µm, and 4 µm 

TLM heterostructures, respectively, when compared with the largest 18 µm heterostructure.  

3.3.1. I  - V Simulation Methodology 

The device is simulated using TCAD simulation using an electro-thermal model. The spacing 

between the Ohmic contacts varies from L1 = 4 µm, L2 = 8 µm, L3 = 12 µm and L4 = 18 µm. 

The Ohmic contact length is LC = 50 µm for all the source-to-drain distances as depicted in 

Figure 3.17(a). The energy band diagram overlapped with electron concentration profile in the 

heterostructure cross-section is illustrated in Figure 3.17(b). The described Ti/Al/Ni/Au 

multilayer metallisation scheme was used for Ohmic contacts to create TLM heterostructures 

with various source-to-drain distances. Hall-effect measurements indicate a 2DEG electron 

mobility of 1950 cm2 V-1s-1, at room temperature. A C – V technique has revealed an electron 

sheet density of 𝑛𝑠 = 1.5 × 1013 cm−2. The Ohmic contacts were implemented to the structures 

by using heavily doped GaN regions with a measured contact resistance of 0.3 Ω.mm. 

 

 

Figure 3.17: (a) Top-down view of the AlGaN/GaN TLM and (b) energy band diagram and electron 

concentration profile at equilibrium. 
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The I – V characteristics of the 100 µm wide TLM structures with the described source-to-

drain distances plotted in Figure 3.18 are measured at DC and dark conditions using Agilent 

B1500A framework. For the shortest distance of 4 µm, the voltage applied on the contact is 

restricted to 15 V to prevent contacts damage, while for other spacing lengths of 8 µm, 12 µm 

and 18 µm, the maximum applied voltage is set to 20 V. The arrows point to bias points at 

which a temperature is measured at the structure (18 µm and 4 µm TLM structures only) surface 

close to the drain. 

3.3.2. Electro-thermal Simulation and Calibration Methodology 

The electro-thermal model used to simulate electron transport in the TLM heterostructures 

combines two-dimensional (2D) DD simulations with 2D heat transport model. In the 

calibration at a low electric field shown in Figure 3.19(a), we have used a low-field electron 

mobility of 1950 cm2 V-1s-1, a saturation velocity of 1.9 × 107 cm s-1 [163] within the 

concentration dependent mobility model, and a contact resistance of 0.3 Ω.mm. At a high 

electric field, a combination of the nitride specific field dependent mobility model [164] with 

Shockley-Read-Hall (SRH) recombination and Fermi-Dirac statistics is used. The Poisson and 

 

Figure 3.18: DC I – V measured characteristics of the AlGaN/GaN TLM structures. The arrows 

indicate the bias at which temperature of the structure shown at the given electric field is measured 

at the surface. 
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current continuity equations are solved in all simulations [165]. Specifically, the low-field 

analytic mobility model based on Caughey and Thomas [166] and Selberherr [167] is employed 

in the simulation, given by:  

𝜇𝑛(𝑁, 𝑇𝐿) = 𝜇𝑚𝑖𝑛 (
𝑇𝐿

300
)
𝛼

+
𝜇𝑚𝑎𝑥 (

𝑇𝐿

300)
𝛽

− 𝜇𝑚𝑖𝑛 (
𝑇𝐿

300)
𝛼

1 + (
𝑇𝐿

300)
𝛾

(
𝑁

𝑁𝑐𝑟𝑖𝑡
)
𝛿

 (3.3) 

where 𝑁 and 𝑇𝐿 are the total doping concentration and the temperature in Kelvin, 𝜇𝑚𝑎𝑥 and 

𝜇𝑚𝑖𝑛 are the mobility of undoped samples, where lattice scattering plays a dominant role and 

the mobility of highly doped materials, where impurity scattering is the main scattering 

mechanism. 𝑁𝑐𝑟𝑖𝑡 is the doping concentration when the mobility reaches the average value of 

𝜇𝑚𝑎𝑥 and 𝜇𝑚𝑖𝑛, 𝛿 is a measure of how quickly the mobility changes from 𝜇𝑚𝑎𝑥 and 𝜇𝑚𝑖𝑛, 𝛿, 

𝛽 and 𝛾 are temperature dependent coefficients. The AlGaN/GaN TLM heterostructures have 

a background doping concentration of 1 × 1016 cm−3. Carbon traps density of 1 × 1017 cm−3 at 

an energy level 𝐸𝑇𝐶  =  𝐸𝑉  +  0.9 𝑒𝑉 and iron traps concentration of 4 × 1018 cm−3 at 𝐸𝑇𝐼  =

 𝐸𝑉  +  0.6 𝑒𝑉 are considered in the GaN buffer and Al0.1Ga0.9N back barrier, respectively [168]. 

HP-Si (111) substrate is a p-type doped [169] with a concentration density of 5 × 1018 cm−3. The 

GaN cap donor concentration was set to be 5 × 1020 cm−3, which is similar to that reported in 

[170] with an energy level of 𝐸𝑇  =  𝐸𝐶  −  0.5 𝑒𝑉 [171]. We simulate an 8 µm thickness of the 

Si substrate with a bottom thermal contact at 𝑇 = 300 K but do not introduce additional thermal 

resistance at the bottom of the simulated structure. To investigate the impact of self-heating on 

the device performance, the temperature variations for different source-to-drain distances have 

been considered. The I – V characteristics of TLM structures are firstly simulated using the 

DD transport model without considering the self-heating effects to accurately calibrate the low-

field mobility and saturation velocity [172] in the linear region of the device, where the self-

heating effect is negligible. Later, self-heating effect is taken into consideration to reproduce 

the output characteristics as shown in Figure 3.19(b). 
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The thermal modelling is activated by Giga module accounting for lattice heat flow in the 

device [173]. The used values of thermal conductivity of the different layers were taken from 

[174], [175]. Giga module in Atlas [165] solves the lattice heat flow equation in addition to the 

DD and Poisson equations making the overall simulations to be electro-thermal. The heat flow 

equation is given by:  

 

 

Figure 3.19: I – V characteristics of AlGaN/GaN TLM structure: (a) DD simulations of the 

AlGaN/GaN TLM without a self-heating effect, (b) electro-thermal (ET) simulations of the 

AlGaN/GaN TLM (with a self-heating effect). Note that the mobility model in the DD and the ET 

simulations has been calibrated at a low-electric field only. 
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C
dTL

dt
= ∇(λ∇TL) + H 

(3.4) 

where 𝐶 denotes the heat capacitance per unit volume, 𝜆 is the thermal conductivity of the 

respective materials, 𝐻  is the heat generation term, and 𝑇𝑙  is the local lattice temperature. 

Thermal conductivity for GaN and AlN has been fit against measured experimental data as 

presented in Figure 3.20. Here, we have used a power function in the form:  

𝜆(TL) = α𝜆 (
TL

300
)
−β𝜆

 
(3.5) 

To fit a dependence of thermal conductivity on temperature with experimental data [174] for 

GaN and AlN [175] shown in Figure 3.20, respectively, that have been used in the simulations. 

𝛼𝜆 and 𝛽𝜆 are the respective fitting coefficients for GaN and AlN summarised in Table 3.1 The 

heat generation term is given by the equation [173]:  

   𝐻 = [
|𝑗𝑛⃗⃗⃗⃗ |

2

𝑞𝜇𝑛𝑛
+

|𝑗𝑝⃗⃗⃗⃗ |
2

𝑞𝜇𝑝𝑝
] + 𝑞(𝑅 − 𝐺𝑐) 

                                   [𝜑𝑝 − 𝜑𝑛 + 𝑇𝐿(𝑃𝑝 − 𝑃𝑛)] − 𝑇𝐿(𝑗𝑛⃗⃗  ⃗𝛻𝑃𝑛 + 𝑗𝑛⃗⃗  ⃗𝛻𝑃𝑝) 

(3.6) 

where |𝑗𝑛⃗⃗  ⃗|, |𝑗𝑝⃗⃗⃗  | are the current densities of electrons and holes, µ𝑛 , µ𝑝  are the mobility of 

electrons and holes. 𝑛, 𝑝 are the electron and hole concentrations; 𝜑𝑛, 𝜑𝑝 are the quasi-fermi 

levels of electrons and holes; 𝑃𝑛, 𝑃𝑝 are the thermoelectric powers of electrons and holes, 𝑅 is 

the bulk recombination rate of carriers; 𝐺𝑐 is the carrier generation rate; 𝑇𝐿 is the local lattice  

temperature; and 𝑞 is elementary charge of an electron. 

Table 3.1: The fitting coefficients for GaN and AlN used in the relation (3.2). Note that the coefficient 

𝛼𝜆 has units of W/mK while 𝛽𝜆 is unitless. 

Materials 
Coefficient (𝜶𝝀) 

[W mK-1] 
Coefficient (𝛃𝝀) 

GaN 2.2132 1.447 

AlN 2.83 1.529 
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3.3.3. The Role of Self-Heating and Polarisation 

Figure 3.19(a) presents the calibration of the TLM structure against the experimental 

measurements without self-heating. A larger difference between the measurement results and 

the simulations, that is caused by the self-heating effect, is seen for the shortest contact spacing 

 

Figure 3.20: Thermal conductivity as a function of temperature compared with a fitting power 

function for (a) GaN [174] and (b) AlN [175]. 
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of L1 = 4 µm at 𝑉𝐷𝑆 = 20 V. The difference between the experimental measurements and the 

simulation data reduces when the source-to-drain distance increases. Figure 3.19(b) compares 

the simulation results obtained from electro-thermal simulations, while using the calibration of 

thermal conductivity from Figure 3.20. A stronger self-heating effect is observed for the 

shortest source-to-drain distance TLM, L1 = 4 µm, when compared with longest TLM, L4 = 

18 µm. This is due to the higher electric field between the contacts in the shortest TLM 

compared with larger TLMs. The drain current reduction occurs due to mobility degradation 

caused by the self-heating. The simulation agreement improves as the distance between the 

source and drain is increased as expected so a very good agreement between simulation results  

and measurement data can be observed. 

The lattice temperature profiles in the 2DEG along the channel and its 2D distributions for all 

the structures (L1, L2, L3, and L4) are presented in Figure 3.21 and Figure 3.22, respectively. 

When the spacing between the source and the drain decreases, which increases the electric field 

at the vicinity of the drain [176] in a TLM structure, the lattice temperature increases and hence 

degrades the transport properties [140]. The GaN channel temperature increase is due to more  

 

Figure 3.21: Lattice temperature profiles in the 2DEG along the channel for different 

source-to-drain distances at 𝑉𝐷𝑆 = 20 V. 
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energetic carriers in the channel with a larger kinetic energy accelerated by the increasing 

electric field [140], [177], [178]. The hot spot is located next to the drain contact for all structures 

[179]. At an applied drain-to-source bias of 20 V, the shortest structure (L1 = 4 µm) exhibits a 

peak lattice temperature of 566 K which is reported similarly in [177]. When the  

source-to-drain distance increases to 8 µm (L2), a peak of lattice temperature decreases to 459  

K in the structure and then to 403 K and to 374 K in the 12 µm and 18 µm structures (L3 and 

L4). The hot spot remains at the drain side for all TLM structures [180], [181]. The maximum 

simulated lattice temperature of 374 K at applied bias of 20 V in the 18 µm TLM structure is 

in a reasonable agreement (∼7 %) with a measured temperature of 399 K indicated in Figure 

3.18. In the smallest, 4 µm TLM structure, the simulations give a lattice temperature of 434 K 

 

Figure 3.22: 2D Lattice temperature distributions for TLM heterostructures with a source-to-drain 

distance of (a) L1 = 4 µm, (b) L2 = 8 µm, (c) L3 = 12 µm, and (d) L4 = 18 µm, at applied biases of 

20 V. 
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at applied bias of 13 V (used in the experiment) which is also in a good agreement (∼4 %) with 

experimentally measured temperature of 453 K (Figure 3.18). 

The drain current in the largest TLM structure with a drain-source distance of L4 = 18 µm is 

compared against the scaled structures at an applied voltage 𝑉𝐷𝑆  = 15 V excluding and 

including the self-heating effects. The self-heating effect has a very small impact on the current 

of the 18 µm TLM structure. When the distance between the source and drain contacts is 

reduced to L3 = 12 µm, the drain current increases by 31.7 % (self-heating included) and by 

40.7 % (self-heating excluded). With further scaling of the distance between the source and 

drain contact to L2 = 8 µm, the drain current increases by 61.7 % in the simulation with self-

heating and 88 % without self-heating. Finally, for the shortest TLM structure of L1 = 4 µm, 

the drain current increases by 109.6 % with self-heating included and by 210.9 % with self-

heating excluded in the simulation as compared to the largest TLM structure (L4 = 18 µm), 

which serves here as a reference to the comparison. When applying an external electrical stress 

on the TLM structure (applied voltage) via contacts, the wurtzite crystal structure of III-

Nitrides suffers from the stress. This affects the polarisation along with different spacing 

 

Figure 3.23: Measured I – V characteristic of TLM structure (red lines) plotted against the 

hypothetical low-field calibrated results. The black dashed lines represent the simulations without 

self-heating while the black solid lines are the simulation results including self-heating effects. In 

all simulations, the polarisation value of the largest structure (L4 = 18 µm) is used. 
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between the contacts. This phenomenon is known as the inverse or converse piezoelectric effect 

[181], [182]. To study this phenomenon, we altered the polarisation factor for TLM structures to 

mimic the electrical stress that is applied after each measurement thus changing the total value 

of polarisation. Figure 3.23 illustrates hypothetical I – V characteristics if the polarisation factor 

would be fixed at a value calibrated for the TLM structure with L4 = 18 µm, the largest source-

to-drain distance. By applying this value on L1 = 4 µm, the drain current has increased by 66.8 

% in the simulation, which clearly disagrees with experimental observations. 

Electrical and mechanical strain/stress and its relationship with the electric field in GaN 

HEMTs has a tremendous impact on GaN based devices in general [181]. Nitride materials like 

GaN which have unique properties due to the lack of inversion symmetry and high iconicity 

exhibit inverse/converse piezoelectric effect due to strain/stress generated by the electric field 

[183]. When applying an external electrical and mechanical stress on the TLM structure via 

contacts (applied voltage), the wurtzite crystal structure of III-Nitrides suffers distortion and 

deformation from mechanical stress on GaN and AlGaN layers. This affects the polarisation 

along with different spacing between the contacts. The electrical stress caused by an applied 

voltage on Ohmic contacts induces a lattice deformation at the vicinity of the drain as illustrated 

in Figure 3.24. The total polarisation value decreases when compared to the largest contact of 

18 µm for 12 µm, 8 µm, and 4 µm by 7 %, 10 %, and 17 %, respectively. 

 

Figure 3.24: Schematic diagram of the TLM structure that illustrates the strain induces by applied 

electrical stress. 
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Finally, the relationship between the change in polarisation and the source-to-drain distance is 

almost linear, as shown in Figure 3.25. 

3.4. Summary 

Infrascope temperature mapping system measurements have shown a large increase in 

temperature at the S/D contacts of AlGaN/GaN-based devices at operating conditions. 

Temperature coupling of a high conductivity tensile region to the lower conductivity regions 

is responsible for the temperature rise observed in both short and long gateless devices. The 

thermal coupling also enhances the peak of temperature at the end of the gate in the 

AlGaN/GaN HEMTs. In addition, the HR-XRD measurement supported by DD simulations 

have revealed that the change of the strain at the vicinity of S/D Ohmic contacts, due to a 

difference in expansion coefficients of III-N and S/D metallisation, is the reason behind this 

temperature rise. 

We have studied Al0.32Ga0.68N/AlN/GaN/Al0.1Ga0.9N TLM heterostructures with a GaN cap 

layer grown on a p-type doped HP-Si (111) substrate. Their I – V characteristics from 

experimental measurements were simulated via a 2D drift-diffusion transport model using 

Fermi-Dirac statistics and the SRH recombination model by commercial tool Atlas-Silvaco 

[184]. A thermal model was employed to study the self-heating effects with the thermal 

 

Figure 3.25: The total polarisation value decreases when compared to the total polarisation used in 

the largest 18 µm TLM structure. 
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conductivity approximated by a power function and calibrated to experimental data. We have 

found that the current soon becomes limited by increase in a lattice temperature with the 

increase in applied bias up to 13% (the 4 µm structure) and that this limitation occurs sooner 

in shorter structures. We have demonstrated a good agreement of the electro-thermal 

simulations predicting a lattice temperature of 374 K against experimental temperature of 399 

K at applied bias of 20 V in the largest, 18 µm structure as well as in the smallest, 4 µm structure, 

predicting a lattice temperature of 434 K against experimental temperature of 453 K at applied 

bias of 13 V. The maximum lattice temperature for each TLM was predicted in the vicinity of 

the drain, when constant strain profile is assumed. In addition, we have observed that the total 

polarization value in heterostructure reduces when compared to the largest contact distance of 

18 µm for 12 µm, 8 µm, and 4 µm by 7 %, 10 %, and 17 %, respectively. This decrease in the 

total polarization is due to the inverse piezoelectric effect, or also called the converse 

piezoelectric effect, caused by the additional stress induced by the applied electric field on 

contact. The inverse piezoelectric effect changes the total polarization thus affecting a 2DEG 

density in the channel [185]–[187].
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4. A Parametric Technique for Trap Characterisation in AlGaN/GaN-Based Devices 
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This chapter is dedicated towards the development of a parametric technique for 

characterisation of bulk and surface trapping mechanisms in AlGaN/GaN-based devices. There 

is a widespread agreement that both self-heating and charge trapping are contributing factors 

in transient current degradation [188]–[191], which has led our study towards investigating the 

kinetics of charge trapping mechanisms. Our focus lies within gaining insight into analysing 

the degradation of both source and drain transient current with the complete exclusion of self-

heating and under normal device operation. We use the knowledge gained in Section 2.2.6.3, 

describing the physical mechanisms of both bulk and surface trapping, to contribute towards 

the understanding of our analysis. In the coming sections: the equipment used to perform 

measurements and the hardware calibration is detailed; the influence that electrostatic potential 

has on charge trapping is investigated; the mechanisms of bulk and surface trapping under 

various biasing conditions is analysed; and the influence that surface trapping has on current 

degradation compared to self-heating is investigated. 

4.1. Degradation of Current Misconceptions 

Several studies investigating the current degradation in AlGaN/GaN HEMTs have resulted in 

differing conclusions [192]–[194]. It is widely agreed upon that transient current degradation 

involves self-heating and charge trapping [188]–[191]. Some studies of transient drain current 

suggest that two mechanisms of current degradation of different time constant in AlGaN/GaN 

HEMTs are caused by both bulk and surface trapping [192], [193]. Other investigations suggest 

that the two current degradation trends are proportional to self-heating effects that occur at two 

different times in AlGaN/GaN HEMTs [194]. With the significant impact of the current 

degradation time constant and magnitude on device reliability and RF performance, it is vital 

to address its mechanisms and kinetics. 

Based on the works of [192], [193], the research fails to sufficiently exclude self-heating 

mechanisms or, at least, provide proof that self-heating is a negligible degradation mechanism. 

Although these works are more applicable than the commonly used deep-level transient 

spectroscopy (DLTS) [195], trap properties are gathered through an adaptation of DLTS and 

the issue of not excluding self-heating persists. The techniques used in these works are to 

identify the current transient time-constant spectra using pulse measurements under the 

assumption that the change in current stems from the change in trapping in the device alone. It 
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is stated that the current collapse is strictly related to charge trapping at deep levels that are 

generated through electrical and thermal stress within the device. An example of the results 

found by using this methodology are given in Figure 4.1(a), whereby the transient current is 

measured under ON-state conditions, e.g. (𝑉𝐺𝑀; 𝑉𝐷𝑀) = (1 V; 2 V), with particular quiescent 

OFF-state biasing conditions, e.g. (𝑉𝐺𝐹; 𝑉𝐷𝐹) = (-6 V; 27 V). Then, shown in Figure 4.1(b), the  

 differential of the transient current measurements (𝜕𝐼𝐷𝑆 𝜕𝑙𝑜𝑔10(𝑡)⁄ )  is calculated to show 

 

 

Figure 4.1: (a) Drain current transients recorded after different trapping conditions and (b) related 

differential signals: T1 amplitude is enhanced by the combination of drain voltage and drain current 

experiencing his maximum after semi-on trapping condition, whereas broad T2 spectrum is 

composed by one drain-influenced component (T2D) and one gate-influenced component (T2G). 

Finally, T3 is a detrapping process [200]. 
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several peaks in the differential signal. According to this work, the peaks are described as the 

degradation in current due to the time dependent trapping processes; i.e. bulk trapping is T1, 

surface and second bulk trapping is T2 and detrapping is T3. Although this may be true for 

devices operating at low power, this still does not answer the question of how trapping can be 

decoupled from self-heating under normal device operation. 

The works of [194] ignore the trapping processes and focus on the cause of current degradation 

to be self-heating. To measure the temperature within the device, they monitor the changes in 

the forward Schottky gate voltage (|𝜎𝑉𝑔|) of several Schottky diodes that are placed on top of 

the wafer and at different distances away from the device. By applying a low enough test 

current through the Schottky diodes to avoid self-heating, the transient change in |𝜎𝑉𝑔|  is 

measured when the device is set to the active region. Apparently, |𝜎𝑉𝑔| changes linearly with 

temperature rise. As a result, it is observed by this work that the two temperature rises occur, 

as seen in Figure 4.2. Although this may be true, it neglects any analysis of transient current 

degradation within the device as a result of both self-heating and charge trapping together. 

4.2. Self-Heating Model 

Self-heating is a fundamental reliability issue in AlGaN/GaN-based devices. As AlGaN/GaN-

based devices typically operate at high power (> 2 W/mm), maintaining high performance and 

reliability is a significant challenge. This is particularly true given how quickly the increase in 

 

Figure 4.2: Transient temperature rise curves of the device under different electrical bias conditions. 

(inset) relationship between temperature rise and power density [194]. 
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temperature occurs with respect to time, as described in Section 2.2.6.3. Therefore, to begin 

our investigation into characterising the degradation mechanisms within AlGaN/GaN HEMTs 

we model the thermal behaviour within the device. In particular, we use the RC thermal model 

provided by [194], [196]. The described RC thermal model used to extract the self-heating 

characteristics, provided in Figure 4.3, is given as: 

∆𝑇(𝑡) = 𝑃𝐷𝐼𝑆𝑆 × ∑𝑅𝑇𝐻,𝑖 (1 − 𝑒
−

𝑡
𝜏𝑖)

𝑛

𝑖=1

 (4.1) 

Where ∆𝑇(𝑡) is the temperature rise with respect to time, 𝑃𝐷𝐼𝑆𝑆 is the dissipated power, 𝑅𝑇𝐻,𝑖 

is the thermal resistance at the i-th stage of the Foster RC network. Additionally, 𝜏𝑖 = 𝑅𝑇𝐻,𝑖 ×

𝐶𝑇𝐻,𝑖 is the thermal time constant, where 𝐶𝑇𝐻,𝑖 is the thermal capacitance at the i-th stage of the 

Foster RC network. The first stage of i defines the thermal parameters where the temperature 

has not thermally coupled, occurring during a short period. The second stage of i defines the 

thermal parameters for when the temperature has thermally coupled through (i) coupling of 

heat from source, gate and drain peaks, and (ii) heat that is diffused back into the device at the 

semiconductor/substrate interface. This second stage takes a longer time due to  

 

Figure 4.3: Transient heating characteristic at various power densities (𝑃) using the RC thermal 

model [194], [196]. 



 

 

 

 

CHAPTER 4 
PARAMETRIC TECHNIQUE FOR CHARACTERISING CHARGE 

TRAPPING EFFECTS IN AlGaN/GaN-BASED DEVICES 

 

 

93 

 

the thermal diffusion process. The calculated transient temperature at different dissipated 

power (0.8, 1.2, 1.7 and 2.0 W mm-1) is shown in Figure 4.3. The 𝑅𝑇𝐻,𝑖 and 𝜏𝑖 parameters used 

for the calculation of Equation (4.1) is given in Table 4.1. We observe two time constants of 

self-heating mechanisms, at 1 ms and 𝑡𝑠𝑎𝑡,𝑇𝐻 = 1 s. It is important to note that regardless of the 

power applied, the temperature time constant (𝑡𝑠𝑎𝑡,𝑇𝐻) is unchanged. 

4.3. Electrostatic Trapping 

The impact of trapped charges on the device electrostatic, described as the charge trapping that 

occurs as a result of changing an applied voltage, is first investigated. In order to induce 

electrostatic trapping with no self-heating and hot carrier injections, the pulse waveform shown 

in Figure 4.4 has been applied to the source (𝑉𝑆) and drain (𝑉𝐷) terminals of a TLM (𝐿𝑆𝐷 = 8 

µm). This provides low 𝑉𝐷𝑆 = 𝑉𝐷 − 𝑉𝑆, to negate self-heating effects and high 𝑉𝐷, 𝑉𝑆, to induce 

electrostatic trapping. 𝑉𝑆  and 𝑉𝐷  are given in respect to the ground, 0V, of the used 

semiconductor analyser framework. 

Table 4.1: Parametric values applied to RC Thermal Model. 

i RTH,i [Ω] τi  [s] 

1 0.32 300 n 

2 1 5 µ 

3 0.05 50 µ 

4 0.22 100 m 
 

 

Figure 4.4: Voltage waveforms applied on source (𝑉𝑆) and drain (𝑉𝐷) terminals for characterising 
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The resulting transient 𝐼𝐷 at different 𝑉𝑆 are presented in Figure 4.5. The degradation of 𝐼𝐷 is 

caused by the amount of trapped charges under different 𝑉𝑆 and 𝑉𝐷 conditions, where 𝑉𝐷𝑆 is 

constant. The trapping process is completed within a few micro seconds, independently of the 

applied voltages. In contrast to the trapping, the discharge mechanism is very slow. It takes a 

few milliseconds for the trapped charges to begin discharging. It is very important to note that 

minimal variation of 𝐼𝐷 is observed between 10 µs and 1 ms. From this figure, we can observe 

that the trapped charge can impact the device electrostatic quite significantly. 

4.4. Device and Instruments 

4.4.1. Device Performance 

The investigated epi-structures of the AlGaN/GaN TLM and HEMT were grown via MBE on 

HP-Si (111) substrate of a resistivity of 2000 Ω.cm, Figure 4.6(a) and (b), respectively. The 

AlGaN/GaN TLM consists, from the substrate to the top, of low-temperature AlN/GaN/AlN 

(250/250/40 nm) nucleation layers, a 1.7 μm Al0.10Ga0.90N back-barrier to reduce alloy 

electrostatic trapping; where 𝑡𝑅𝐸𝑆𝐸𝑇 = 10 s, 𝑡𝐸 = 200 ns, and 𝑡𝑊 = 1 s. 

 

Figure 4.5: Transient 𝐼𝐷 at different 𝑉𝑆 (from 1 V to 9 V; step = 1 V) showing the impact of the 

trapped electrons on the electrostatic. The experiment conditions and used pulse waveform are 

summarised in Figure 4.4. 
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scattering and to improve the carrier confinement of the 2DEG. A channel is made of a 15 nm 

thick unintentionally doped GaN buffer followed by a 25 nm undoped Al0.32Ga0.68N barrier and, 

finally, a 1 nm GaN cap layer. Room temperature Hall measurements yields a sheet resistance 

of 𝑅□ 398 Ω sq-1. The CV-technique revealed an electron sheet density of 1.5 × 1013 cm-2. 

 

 

Figure 4.6: Schematic cross-section of the epi-structures grown on Si-HP (111) substrate for 

AlGaN/GaN (a) TLM and (b) HEMT. The source-to-drain distance and device width are 5 μm and 

100 μm, respectively. (c) IDS - VDS and IDS - VGS characteristics at VGS = 0 V and VDS = 20 V, 

respectively, of the used AlGaN/GaN HEMT. 
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 The investigated epi-structure of the AlGaN/GaN HEMT was also grown by MBE on HP-Si 

(111) substrate, as shown in Figure 4.6(b). MBE was performed using NH3 for the Nitrogen 

precursor. The HEMT structure consists, from the substrate to the top, of low-temperature 

AlN/GaN/AlN (250/250/40 nm) nucleation layers, a 1.1 μm GaN back-barrier and 1 nm AlN 

exclusion layer to reduce alloy scattering and to improve the carrier confinement of the 2DEG. 

A 25 nm undoped Al0.28Ga0.72N barrier and, finally, a 1 nm undoped GaN cap layer. Room 

temperature Hall measurements yields a sheet resistance of 𝑅□ = 340 Ω/sq, an electron sheet 

density of 1.25×1013 cm-2, electron mobility of 1480 cm V-1s-1, and dislocation density of 

~5×109cm-2. The gate metallisation scheme is Ni/Pt/Ti/Mo/Au (5/25/25/30/250 nm), where 

Ti/Al/Ni/Au (10/200/40/100 nm) multilayers were used for the source and drain terminals. The 

contact resistance and specific resistivity are 0.39 Ω.mm and 3.8×10-6 Ω.cm2, respectively. The 

fabrication process flow is similar to that in [107] with additional Si3N4 passivation. The IDS – 

VDS at 𝑉𝐷𝑆 = 20 V and ID – VG at 𝑉𝐺𝑆 = 0 V characteristics of the used AlGaN/GaN TLM and 

HEMT are plotted in Figure 4.6(c). 

4.4.2. Device Reset Conditions 

At high voltages, e.g. 𝑉𝐷𝑆 = 20 V, both self-heating and charge trapping occur within the device. 

It takes some time for the device to cool down and trapped charges to discharge after a high 

voltage pulse has been applied. To ensure each measurement on the device can be carried out 

under identical conditions, electrical reset/refresh condition is required to be applied to the 

device between each measurement that is taken. Otherwise, heat and trapped charges that have 

not recovered will influence the measurements on the following experiments. 

The waveform shown in the Figure 4.7 has been applied on the source and drain terminals for 

different pulse widths ranging from 300 µs up 1 s. It is found that 𝑉𝑆 = 0 V and 𝑉𝐷 = 0 V needs 

to be applied before each measurement for a period of time, 𝑡𝑅𝐸𝑆𝐸𝑇 > 10 s, in order to fully 

recover the device from degradation mechanisms (self-heating and charge trapping) that would 

cause an unwanted influence on further measurements. Figure 4.8 shows 20 repeated 

measurements of this pulse waveform (cycles) for AlGaN/GaN (a) TLM and (b) HEMT. No 

change occurs in initial current or trend of current degradation over time with each cycle of the 

measurement. The advantage of this reset technique is much easier to control compared to the 

commonly used device reset using light/dark conditions due to there being less variability that  



 

 

 

 

CHAPTER 4 
PARAMETRIC TECHNIQUE FOR CHARACTERISING CHARGE 

TRAPPING EFFECTS IN AlGaN/GaN-BASED DEVICES 

 

 

97 

 

can cause error; e.g. light intensity and time, dark time. 

 

 

Figure 4.7: Pulse waveform used for testing device reset condition. 

 

Figure 4.8: Transient 𝐼𝑆 at 𝑉𝐷𝑆 = 20 V for (a) 𝑡𝑊 = 300 µs and (b) 𝑡𝑊 = 1s; 𝑡𝑅𝐸𝑆𝐸𝑇 = 10 s, 𝑡𝐸 = 300 

ns on AlGaN/GaN TLM. 𝐼𝑆 produces the same degradation trend through each cycle of the test, 

showing complete device reset. 
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4.5. Transient Current Degradation 

For the first time, a parametric technique that measures both source and drain transient currents 

is developed to extract bulk trapping kinetics under normal device operation with the exclusion 

of self-heating. We describe the developed experimental methodology and then discuss our 

investigation into the time constant and magnitude of bulk and surface traps under various 

biasing conditions. These results are then compared with existing works in order to verify our 

findings. 

4.5.1. Experimental Methodology  

In order to investigate the charge trapping involved in the AlGaN/GaN HEMT structure, we 

propose the experiment given in Figure 4.9. The experiment condition for the AlGaN/GaN 

HEMT, 𝑉𝐷𝑆 = 0 V and 𝑉𝐺𝑆 = 0 V were pulsed to 𝑉𝐷𝑆1 = 10 V, 15 V, and 20 V and 𝑉𝐺𝑆1 = 0 V, 

-1 V, -2 V, and -3 V, respectively, were pulsed for a measurement time of 𝑡𝑚𝑒𝑎𝑠,1 = 1 s. These 

conditions place the device in a semi-ON state. The time to refresh/reset the device, for 

purposes described in Section 4.4.2, is set to be 𝑡𝑅𝐸𝑆𝐸𝑇 = 10 s. While the edge time, 𝑡𝐸, is set 

to be 200 ns in order to reduce parasitic capacitance and avoid diffusion current. The 

AlGaN/GaN TLM uses the same conditions without the gate pulse as there is no gate terminal. 

 

Figure 4.9: Pulse waveforms used for 𝐼𝑆 and 𝐼𝐷 transient measurements for investigating the 

transient bulk trapping behaviour in AlGaN/GaN HEMTs. For AlGaN/GaN TLMs, only VS 

and VDS waveforms are used. 
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Using this experimental methodology, the source and drain currents are measured on both 

AlGaN/GaN TLM and HEMT devices that are grown on different wafers. Figure 4.10 shows 

the current transients, 𝐼𝑆 and 𝐼D, monitored at 𝑉𝐷𝑆 = 20 V for both the AlGaN/GaN (a) TLM 

and (b) HEMT devices. This shows that similar trends of degradation phenomena persist 

regardless of the device architecture (TLM or HEMT) and the wafer. Therefore, the later 

described analysis of these current transients is not limited to only AlGaN/GaN HEMT devices. 

The transient behaviour of source and drain current (𝐼𝑆 and 𝐼D) can be broadly split into two 

phases, namely a fast degradation (DEG1 for ≤ 1 ms) and a slow degradation (DEG2 for ≥ 1 

ms). The following sub-sections analyse the behaviour of bulk and surface trapping for both 

fast and slow degradation under the remaining experimental conditions. 

   

Figure 4.10: Transient source and drain currents, 𝐼𝑆 and 𝐼𝐷. Very similar degradation characteristics 

mechanisms, i.e. charge trapping and self-heating effects, are observed for the (i) AlGaN/GaN 

TLM and (ii) AlGaN/GaN HEMT. The experiment conditions and the used pulse waveform are 

summarised in Figure 4.7. 
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4.5.2. Bulk Trapping 

We investigate the bulk trapping that occurs within the AlGaN/GaN HEMT. Bulk traps are 

identified as the fast charge trapping mechanism that contributes to DEG1 [140]. Electrons that 

flow through the source terminal and become trapped within the bulk, e.g. GaN buffer, are not 

collected by the drain terminal, resulting in a difference between 𝐼𝑆 and 𝐼𝐷 (𝐼𝑆 − 𝐼𝐷 > 0 mA 

mm-1). It is important to note that self-heating does not influence this difference, 𝐼𝑆 − 𝐼𝐷, as it 

degrades both 𝐼𝑆  and 𝐼𝐷  proportionally. Similar to the gated device, 𝐼𝑆 − 𝐼𝐷  > 0 mA mm-1 

occurred in ungated device, as shown in Figure 4.10. This indicates that 𝐼𝑆 − 𝐼𝐷 is not caused 

by gate terminal.  

4.5.2.1.  Fast Degradation – DEG1 

During the fast degradation (≤ 1 ms) phase, a maximum magnitude of 𝐼𝑆 − 𝐼𝐷  is observed, 

which indicates that majotity (> 90%) of bulk trapping occurs during this phase. This stems 

from the high electric field applied within the device that provides enough energy for charge 

carriers to be trapped within the bulk. However, it is well documented that self-heating does 

occur over this period and contributes towards the degradation of current, as previously 

described in Section 2.2.6.3. It is important to note that the degradation of 𝐼𝐷 saturates towards 

the end of this fast degradation phase, indicating the saturation of the first self-heating. 

4.5.2.2.  Slow Degradation – DEG2 

During the slow degradation (≥ 1 ms) phase, current begins to degrade a second time after bulk 

trapping and self-heating saturation. Trace 𝐼𝑆 − 𝐼𝐷  is observed in this phase showing that 

insignificant bulk trapping occurs. According to the RC model, given in Section 4.2, a second 

self-heating phase can occur at this time constant (≥ 1 ms).  

4.5.2.3.  Dependency on Bias Conditions 

Now that bulk trapping has been measured, 𝐼𝑆 − 𝐼𝐷, shown in DEG1, we investigate its kinetics 

under various biasing conditions. Using the same pulse waveform given in Figure 4.7, we apply 

𝑉𝐷𝑆1 = 20 V, 15 V and 10 V, 𝑉𝐺𝑆1= 0 V to -3 V (step -1 V) to the AlGaN/GaN HEMT. The 

current transients for each gate biasing condition are shown in Figure 4.11 for (a) 𝑉𝐷𝑆1 = 20 V, 

and (b) 𝑉𝐷𝑆1 = 10 V. Focusing only on DEG1 for this section, we observe 𝐼𝑆 − 𝐼𝐷  for each 

condition. To analyse the dependency of 𝐼𝑆 − 𝐼𝐷 on bias conditions, we provide Figure 4.12,  
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showing the measurement of 𝐼𝑆 − 𝐼𝐷 with respect to measurement time for each bias condition. 

From this, we can deduce two points: 

i. The magnitude of 𝐼𝑆 − 𝐼𝐷 is only dependent on drain bias. This could suggest that the 

small change in gate bias does not provide a significant enough change in electric field 

to induce greater bulk trapping. Although, given this suggestion, the drain bias step of 

5 V should not impact the bulk trapping significantly. The more likely suggestion is that 

fewer bulk traps occur beneath the gate due to the lack of strain reduction directly 

beneath the gate. This lack of strain reduction contributes towards fewer threading 

dislocations resulting in fewer bulk traps [197].  

ii. There is no change in 𝐼𝑆 − 𝐼𝐷  peak in terms of time regardless of the bias condition. 

Therefore, the timing characteristic of 𝐼𝑆 − 𝐼𝐷 is independent on both drain and gate 

bias. This suggests that rate of bulk charge trapping peak does not change as this is 

dependent on the density of threading dislocations within the bulk for charge carriers 

 

Figure 4.11: Transient behavior of the drain, ID, and source, IS, currents, versus measurement time 

on log scale using the pulse waveforms given in Figure 4.7 with (a) 𝑉𝐷𝑆1 = 20 V and (b) 𝑉𝐷𝑆1 = 10 

V, at 𝑉𝐺𝑆1 = 0 V to -3 V. Two degradations of current are observed at different time constants, 

DEG1 and DEG2. 
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to trap into and not dependent on biasing conditions. Increasing drain bias simply 

provides more energy to charge carriers to reach deeper traps and does not impact the 

speed in which these charge carriers are trapped. 

To further visualise the dependence of 𝐼𝑆 − 𝐼𝐷  against drain and gate bias, we take the 

maximum 𝐼𝑆 − 𝐼𝐷 value from Figure 4.12 (𝑡 ≈ 35 µs) and plot this against each drain and gate 

biasing condition, shown in Figure 4.13. Here, with the inclusion of 𝑉𝐷𝑆1 = 15 V for 𝑉𝐺𝑆1 = 0 

V to -3 V, we observe a linear increase of bulk trapped charge density magnitude with respect 

to 𝑉𝐷𝑆1 increase. As the electric field between the gate and the drain contacts increases linearly 

with linear increase of 𝑉𝐷𝑆1 , greater energy is provided to charge carriers within the channel  

 

Figure 4.12: 𝐼𝑆 and 𝐼𝐷 difference (𝐼𝑆 − 𝐼𝐷) versus the measurement time at 𝑉𝐷𝑆1 = 20 V and 10 V 

for different gate voltages (𝑉𝐺𝑆1 = 0 V to -3 V); indicating the bulk trapping process (DEG1). 

Showing (i) IS – ID magnitude dependence on drain bias only, and (ii) IS – ID timing characteristic 

independent of both drain and gate bias. 
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that results in a linearly increasing bulk trap charge density. This is potentially due to the near-

uniform distribution of threading dislocations within the bulk. 𝑉𝐺𝑆1, however, has no impact on 

bulk trapped charge density as previously discussed. 

4.5.3. Surface Trapping 

Surface trapping is also known to degrade the current within AlGaN/GaN HEMTs as described 

in Section 2.2.6.3. Two mechanisms of surface trapping occur that contributes towards current 

degradation, namely accumulation and redistribution of surface traps. Unlike bulk trapping, 

where 𝐼𝑆 − 𝐼𝐷  > 0 mA mm-1, the surface trapping contributes towards the transient current 

degradation of both 𝐼𝑆  and 𝐼𝐷  proportionally, where 𝐼𝑆 − 𝐼𝐷  = 0 mA mm-1. Here, surface 

trapping changes the electrostatic within the device and, thus, degrading the current. In the 

following, we analyse the current degradation of the AlGaN/GaN HEMT and the time to 

current degradation saturation (time constant) of DEG2, shown in Figure 4.14, due to surface 

trapping accumulation and redistribution. 

4.5.3.1.  Fast Degradation – DEG1 

It is unclear as to whether surface trapping accumulation or redistribution contributes towards 

 

Figure 4.13: The impact of drain voltage, 𝑉𝐷𝑆1, and gate voltage, 𝑉𝐺𝑆1 on (IS – ID)max given at 𝑡 ≈ 35 

μs showing linear proportionality of bulk trapped charge density and 𝑉𝐷𝑆1. Unlike 𝑉𝐷𝑆1, 𝑉𝐺𝑆1 shows 

a negligible impact on bulk trapping characteristics. 
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DEG1. However, for surface trapping accumulation, it is known to occur within 1 µs [198]. 

Due to the large electric field between the gate and drain, charge carriers are trapped at the 

surface of the device as a result of dangling bonds. As the surface trapping accumulation occurs 

within a short period, the degradation of current as a result of this begins before our first 

measurement sample is taken. 

 

4.5.3.2.  Slow Degradation – DEG2 

As we observe a second degradation that does not include bulk trapping (IS − ID = 0 mA mm-

1), therefore, DEG2 must be at least partlially due to surface trapping redistribution. The time 

constant of DEG2 corresponds with that of other works, which validates this theory [194], 

[199]. Similarly to DEG1, the slow degradation (DEG2) is coupled with the second phase of 

self-heating, described in Section 4.2. 

4.5.3.3.  Dependency on Bias Conditions 

By analysing the transient current degradation under different bias conditions (drain and gate 

bias), shown in Figure 4.11, we decouple the surface trapping and self-heating by observing 

  

Figure 4.14: Time constant of DEG2, tDEG2, at VDS1 = 20 V, 15 V, and 10 V and VGS1 = 0 V to -3 V; 

showing the dependence of tDEG2 with both VDS1 and VGS1. 
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the bias dependency of DEG2. Firstly, we examine the time constant of DEG2 (𝑡𝐷𝐸𝐺2 ). In 

contrast to the time constant of DEG1, 𝑡𝐷𝐸𝐺2 is both drain and gate bias independent. Figure 

4.14 shows the behaviour of 𝑡𝐷𝐸𝐺2 extracted from Figure 4.11 with respect to both drain and 

gate biasing conditions. It is clear that 𝑡𝐷𝐸𝐺2 can be influenced by both 𝑉𝐷𝑆1 and 𝑉𝐺𝑆1. With 

consideration of Figure 4.3, where the self-heating time constant does not change with bias 

conditions, this leads us to believe that surface trapping is the cause of 𝑡𝐷𝐸𝐺2 variation. 

With the knowledge that 𝑡𝐷𝐸𝐺2 is surface trapping dependent for semi-ON state conditions, 

explanations to its behaviour under these conditions can be made (Figure 4.14). On one hand, 

the increase of the magnitude of 𝑉𝐺𝑆1 induces greater surface trapping density, leading to a 

larger time for the redistribution process to complete. On the other hand, the required time to 

redistribute the trapped electrons at the surface and extend the ‘virtual gate’ towards the drain 

side reduces when increasing 𝑉𝐷𝑆1. Larger 𝑉𝐷𝑆1, which induces higher electric field, provides 

more energy to surface traps to distribute more quickly [200]. The redistribution of surface traps 

alter the electrostatic integrity and channel resistance in the device. As a result, both source and 

drain current degrade proportionally.  

We cannot determine the dependency of surface trapping magnitude with the pulse waveform 

of Figure 4.9, as it is strongly coupled with self-heating. This leads us onto the investigation of 

Section 4.6, where we conclude whether surface trapping or the second phase of self-heating 

is the primary cause of DEG2 magnitude. 

4.6. Self-Heating & Charge Trapping Mechanisms 

The primary mechanism, 𝑡𝐷𝐸𝐺2, is stated to be dependent on surface trapping during the semi-

ON state. In this section, we investigate the primary mechanism of the magnitude of DEG2. 

The experimental methodology behind how we identify the dominant degradation mechanism 

is described. The severity of increasing the magnitude of gate bias when the device is in the 

OFF-state is investigated. Finally, we conclude on the primary cause of DEG2 and explain the 

importance of reducing the degradation mechanism. 
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4.6.1. Experimental Methodology  

In order to investigate the surface trapping influence on degradation in AlGaN/GaN HEMTs, 

we propose the experiment illustrated in Figure 4.15. Quiescent biasing conditions, 𝑉𝐷𝑆𝑄 = 10 

V and 𝑉𝐺𝑆𝑄 = -10 V, -8 V, -5 V, -3 V, and -1 V, were set at 𝑡𝑄 = 1 µs, 10 ms, and 1 s, whereby 

pre-charging of surface trapping and redistribution occurred. To note, 𝑉𝑇𝐻  = -3.5 V is the 

threshold voltage of this investigated device. 

When 𝑉𝐺𝑆𝑄 < 𝑉𝑇𝐻, there is no self-heating as the device is in the OFF-state. Otherwise, self-

heating occurs due to the device being in a semi-OFF state when 𝑉𝐺𝑆𝑄  > 𝑉𝑇𝐻 . Also, bulk 

trapping occurs within the device during this condition due to the high 𝑉𝐷𝑆𝑄 of 10 V, as a result 

of the mechanisms described in Section 4.5. After the device is pre-charged, the measurements 

were then taken at 𝑉𝐷𝑆2  = 10 V and 𝑉𝐺𝑆2  = 0 V for a time 𝑡𝑚𝑒𝑎𝑠,2  = 1 s. During this 

measurement phase, surface traps begin to redistribute in the opposite manner to the quiescent 

conditions and surface trapping density reduces. This is the consequence of the decreased 

magnitude of gate voltage from the quiescent to the measured condition. Self-heating increases 

as the device is switched from the OFF/semi-OFF state to the ON-state. The bulk trapping 

saturates during the pre-charging conditions and no further bulk trapping occurs during the 

measurement phase, 𝑡𝑚𝑒𝑎𝑠,2. As discussed in Section 4.5.2.3, keeping the same drain voltage 

 

Figure 4.15: Pulse waveforms used for IS and ID transient measurements where surface and bulk 

traps are pre-charged during the pre-charging condition at 𝑉𝐷𝑆𝑄 and 𝑉𝐺𝑆𝑄 for a time 𝑡𝑄. Transient 

current measurements are then taken at 𝑉𝐷𝑆2 and 𝑉𝐺𝑆2 for a time tmeas,2. 
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condition (𝑉𝐷𝑆𝑄 = 𝑉𝐷𝑆2 = 10 V) and changing the gate voltage (𝑉𝐺𝑆𝑄 ≠ 𝑉𝐺𝑆2) does not impact 

the bulk trapping process.  

4.6.2. Primary Slow Degradation (DEG2) Mechanism 

To explore the primary mechanism of DEG2, we first need to decouple bulk trapping from self-

heating and surface trapping in our measurement phase (𝑡𝑚𝑒𝑎𝑠,2). A pre-charging condition of 

𝑉𝐺𝑆𝑄 = -1 V is used for comparison purposes. For all pre-charging bias conditions where 𝑡𝑄 > 

1 ms, bulk trapping is saturated at the same amount as found in Figure 4.11(b). However, 

surface trapping and redistribution are controlled by 𝑉𝐺𝑆𝑄  and 𝑉𝐷𝑆𝑄 . From Figure 4.16 and 

when 𝑡𝑄 ≥ 10 ms, two mechanisms of transient current occur when reducing |𝑉𝐺𝑆𝑄| to |𝑉𝐺𝑆2|: (i) 

recovery of surface trapping redistribution occurs whereby ‘virtual-gate’ length is reduced, 

reducing channel resistance and recovering the current, and (ii) self-heating occurs that 

increases channel resistance and degrades the current. The behaviour of transient current is 

analysed for each pre-charging condition: 

 tQ = 1 µs – Negligible surface trapping redistribution is induced during this pre-

charging condition due to its short pre-charging time. As a result, no recovery of surface 

trapping occurs during measurement. Instead, bulk trapping, self-heating and surface 

trapping degrade the current. Therefore, the current transient behaviour is similar to that 

of Figure 4.11(b) at 𝑉𝐺𝑆1 = 0 V; this occurs for all 𝑉𝐺𝑆𝑄 conditions. 

 tQ = 10 ms – During the pre-charging time, surface trapping accumulation/redistribution 

and complete bulk trapping occur. In addition, no self-heating is induced during the pre-

charging time for 𝑉𝐺𝑆𝑄 = -5 V and -10 V. As a result, the primary cause of the degraded 

current at 𝑡𝑚𝑒𝑎𝑠,2  = 1 µs is surface trapping. This initial degradation increases with 

greater |𝑉𝐺𝑆𝑄 | as greater surface trapping density is accumulated/redistributed. A 

recovery of current is then observed during measurement from ~10 ms to ~40 ms for 

𝑉𝐺𝑆𝑄 = -1 V to -10 V, respectively. This shows that surface trapping recovery has a 

greater impact on the current behaviour than the degradation of current due to self-

heating. As 𝑡𝑄  is less than the time constant of surface trapping that is observed in 

Figure 4.11(b), surface trapping recovery ends premature to the saturation of current 

degradation. Hence, a degradation of current is observed beyond ~40 ms as a result of 

self-heating. 
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 tQ = 1 s – Unlike 𝑡𝑄 = 10 ms, pre-charging of surface traps is complete and occurs at a 

greater magnitude at this pre-charging time. Therefore, the current recovers throughout 

the entirety of the measurement window. In addition, degradation of current is shown 

to be greater when comparing the same 𝑉𝐺𝑆𝑄 at less 𝑡𝑄 at the initial measurement of 

transient current. Large recovery of current is then observed, clearly showing the 

dominance of recovery of surface trapping over self-heating degradation.  

 

Figure 4.16: Transient behavior of the drain, 𝐼𝐷, and source, 𝐼𝑆, currents, versus measurement time 

using the pulse waveforms given in Figure 4.15 with 𝑉𝐷𝑆𝑄 = 𝑉𝐷𝑆2 = 10 V, 𝑉𝐺𝑆𝑄 = -1 V, -5 V, and -10 

V, and 𝑉𝐺𝑆2 = 0 V. The effect of current recovery is shown to increase with greater 𝑉𝐺𝑆𝑄 and 𝑡𝑄 due 

to greater surface trapping density and redistribution. 
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4.6.3. Bulk Trapping vs. Surface Trapping 

It is evident from the previous analyses that surface trapping degradation has a much greater 

impact on DEG2 compared to self-heating. To show how the bulk trapping compares to surface 

trapping with respect to overall current degradation, bulk-trapping is required to be induced 

during measurement whilst maintaining the surface trapping degradation during pre-charging. 

Therefore, during the measurement, there will be degradation due to bulk trapping and self-

heating but recovery of current due to surface trapping under certain conditions. To achieve 

this, 𝑉𝐷𝑆𝑄 = 0 V at 𝑉𝐺𝑆𝑄 = -1 V, -3 V, -8 V and -10 V for 𝑡𝑄 = 1 s are used during pre-charging 

(Figure 4.15). The pre-charging conditions are then stepped up to 𝑉𝐷𝑆2 = 20 V and 10 V and 

𝑉𝐺𝑆2 = 0 V for 𝑡𝑚𝑒𝑎𝑠,2 = 1 s during transient current measurement; shown in Figure 4.17(a) and 

(b), respectively. We observe similar behaviours to changes in bias given in Figure 4.11. The 

 

Figure 4.17: Transient behavior of the drain, ID, and source, IS, currents, versus measurement 

time using the pulse waveforms given in Figure 4.15 with (a) 𝑉𝐷𝑆2 = 20 V and (b) 𝑉𝐷𝑆2 = 10 V, at 

𝑉𝐷𝑆𝑄 = 0 V, 𝑉𝐺𝑆𝑄 = -1 V, -3 V, -8 V, and -10 V, and 𝑉𝐺𝑆2 = 0 V at 𝑡𝑄 = 1 s. The inclusion of bulk 

trapping has minimal impact on the recovery of current degradation when pre-charging 

conditions set the device to the OFF-state; |𝑉𝐺𝑆𝑄| > 𝑉𝑇𝐻. 
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large recovery shown in higher |𝑉𝐺𝑆𝑄| shows the significant dominance of surface trapping over 

both self-heating and bulk trapping. To note, the surface trapping redistribution is gate-to-drain 

voltage (𝑉𝐺𝐷) and 𝑡𝑄 dependent.  

The difference between 𝐼𝑆 and 𝐼𝐷 is extracted from Figure 4.17 and is shown in Figure 4.18. 

This shows near identical characteristics to Figure 4.12 which validates that (i) current is not 

degraded due to bulk trapping during pre-charging and (ii) bulk trapping is not impacted by 

gate bias, only by drain bias. 

 

4.7. Summary 

In this chapter, a new source and drain transient currents, 𝐼𝑆  and 𝐼𝐷 , technique for charge 

trapping characterisation in AlGaN/GaN HEMTs, under normal device operation, has been 

developed. Using this technique, charge trapping behaviours, with the exclusion of self-heating, 

have been analysed. Two types of charge trapping mechanisms have been identified: (i) bulk 

trapping occurring on a time scale of < 1 ms, followed by (ii) surface trapping and redistribution 

beyond 1 ms. The bulk trapping and surface trapping corresponds to fast and slow current 

 

Figure 4.18: 𝐼𝑆 and 𝐼𝐷 difference (𝐼𝑆 − 𝐼𝐷) versus the measurement time at 𝑉𝐷𝑆2 = 20 V and 10 V 

for different gate voltages (𝑉𝐺𝑆2 = -1 V, -3 V, -8 V, and -10 V). When compared with Figure 4.12, 

this validates that no charge carriers are trapped in the bulk during pre-charging. 
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degradations, respectively.  

Through monitoring the difference between 𝐼𝑆 and 𝐼𝐷, bulk trapping time constant is shown to 

be independent of 𝑉𝐷𝑆 and 𝑉𝐺𝑆. Although, 𝑉𝐷𝑆 is found to affect the bulk trap density. 𝑉𝐷𝑆 is 

found to be a cause of bulk charge trapping during both ON and OFF states of the device.  

Surface trapping is found to have a much greater impact on slow degradation when compared 

to self-heating and bulk trapping. This is an important step to understanding the priority of 

device engineering, whereby the focus should be aimed towards reducing surface trapping 

accumulation and redistribution in order to minimise current degradation. 
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The focus of this chapter is to apply the knowledge gained from the research conducted in 

previous chapters in order to propose new optimisations for the AlGaN/GaN HEMT Ohmic 

contacts, Schottky contact, and device architecture. Through deep understanding of thermal 

management issues at the Ohmic contacts, Chapter 3, we are able to focus on optimising the 

performance of the Ohmic contacts and propose an option to reduce the self-heating effects, 

Section 5.2. The insight gained from the newly developed characterisation technique, Chapter 

4, showing a very small impact of gate voltage on bulk trapping gave us reason towards 

optimising Schottky contact fabrication process, Section 5.3. Finally, the performance of our 

devices were enhanced through several modifications to its architecture, discussed in Section 

5.4. The output of this research is the result of collaborations with University of Lille, Swansea 

University and University of Malaya.  

Through recessing the Ohmic contacts of our device into the AlGaN barrier layer, we reduce 

the access resistance. We propose a fabrication process of ohmic contacts to reduce 𝑅𝐶  of 

AlGaN/GaN HEMTs with a high Al concentration, whilst avoiding implantations that cause 

HF-traps and gate leakage. The optimisation of Schottky contacts is crucial for gate control in 

GaN-based HEMTs in order to achieve high frequency performance, good linearity and low 

leakage current. The gate leakage of the device is minimised through the implementation of a 

TiN layer within the Schottky contact, which alters the state of the AlGaN barrier layer and 

forms quasi-p-type doping directly beneath the Schottky contact. Finally, we propose to replace 

the conventional HEMT with several new structures (i.e. step-graded AlGaN barrier layer, AlN 

exclusion layer, and InGaN channel layer) to improve 2DEG density and mobility within the 

device.  

5.1. Device Structure 

A schematic cross-section of the AlGaN/GaN epi-structures used for Ohmic contact 

optimisation is illustrated in Figure 5.1(a) without exclusion layer and (b) with exclusion layer. 

This structure is grown by MBE on a High-Purity (HP) and highly-resistive (𝜌 > 5 kΩ.cm) 

Silicon substrate with (111) orientation. It consists, from the substrate to the top, of low-

temperature AlN/GaN/AlN nucleation layers for stress accommodation, and a 1 μm 

Al0.07Ga0.93N back-barrier to reduce alloy scattering and to improve the carrier confinement of 

the 2DEG. A channel is made of a 100 nm thick unintentionally doped GaN buffer followed by 

a 1 nm AlN exclusion and a 20 nm undoped Al0.28Ga0.72N layer to increase the electron density 
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in the 2DEG and to reduce alloy disorder scattering [201]. Finally, a 2 nm GaN cap layer is 

grown in order to reduce surface traps [202]. The material growth process and conditions to 

form this epi-structure are similar to those given in previous works by Cordier [203]. 

The AlGaN/GaN epitaxial structures used for Schottky contact optimisation are grown using a 

Riber reacture on a highly resistive (111)-oriented silicon substrate (10 to 20 kΩ.cm) by MBE, 

shown in Figure 5.1(c). A 0.54 µm-thick stress accommodation layer of AlN/GaN is deposited 

initially, followed by a 1.7 µm-thick buffer of Al0.1Ga0.9N, a 15 nm-thick channel of GaN, a 25 

nm-thick barrier of Al0.32Ga0.68N, and a 1 nm GaN cap layer. In a first step, the surface is 

ultrasonically cleaned and de-greased by 1 min dip in HNO3:H2O (1:1), 1 min wet etch in 

HCl:H2O (1:1), and then drying by nitrogen. Ti/Al/Ni/Au (12/200/40/100 nm) evaporation is 

then performed, followed by a rapid thermal annealing at 900 oC for 30 s in order to form ohmic 

contacts, [204]. Components are isolated by He+ ion implantation. As a result, an isolation 

current density of 850 nA mm-1 is measured at +150 V with an 8 µm space between the two 

contacts. 

5.2. Ohmic Contact Optimisation for Access Resistance Lowering 

The issue of current reduction through AlGaN/GaN-based devices as a result of Ohmic contact 

limitations is addressed in this section. We propose two solutions towards improving the current 

 

Figure 5.1: Schematic cross-section of AlGaN/GaN epi-structures grown on the Si-HP (111) 

substrate with Ti/Al/Ni/Au (12 nm/200 nm/40 nm/100 nm) contact metallisation for Ohmic contact 

optimisation (a) without exclusion layer, (b) with exclusion layer and (c) for Schottky contact 

optimisation. 
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flow through these devices. Firstly, we advise etching the AlGaN barrier layer beneath the 

Ohmic contacts prior to deposition and annealing of Ohmic contacts in order to reduce access 

resistance. Secondly, we contest the temperature rise at the Ohmic contacts with a proposition 

to overgrow the AlGaN barrier layer at the Ohmic contacts by reducing the vertical electric 

field between the channel and contact metal. 

5.2.1. Ohmic Contact Optimisation for AlGaN/GaN HEMTs  

To fully benefit from the properties of AlGaN/GaN HEMTs, reduction of extrinsic 𝑅𝐶  of 

AlGaN/GaN HEMTs is essential to enhance their DC/RF performance. To achieve this, several 

methodologies have been previously proposed [134], [135], [205]–[207]. Firstly, implanting Si 

into the AlGaN barrier is known to reduce ohmic contact, 𝑅𝐶. However, annealing contacts at 

high temperatures, to activate dopants, results in diffusion of the Si dopants away from the 

contacts. The result is increased high-frequency (HF) charge trapping and gate leakage current 

[208]. Secondly, increasing the Al concentration in the barrier and/or using AlN exclusion layer 

is known to increase 2DEG confinement and to enhance 2DEG density and mobility, which 

enhances performance [134], [135]. However, it results in increased 𝑅𝐶  due to low metal 

diffusion beneath the metal contact [136], [137]. 

In this section, we propose a fabrication process of ohmic contacts to reduce 𝑅𝐶 of AlGaN/GaN 

HEMTs with a high Al concentration, while avoiding implantations that cause HF-traps and 

gate leakage. This is essential for enhancing device DC and RF performance. For this new 

proposal, the outer edges of an AlGaN/GaN HEMT, where the source and drain ohmic contacts 

are to be placed, are etched from the surface of the device down into the AlGaN barrier layer. 

Contact metal is then evaporated onto the etched locations and rapidly annealed under high 

temperatures. During the annealing process, contact metal diffuses into the AlGaN barrier layer 

to form an alloy beneath the metal contact. The change in 𝑅𝐶 at different etching depths at 

various annealing conditions is investigated to identify the optimal etching depth given by the 

lowest 𝑅𝐶. 

5.2.1.1.  Technological Process of Ohmic Contact 

To optimise the metallisation scheme, particularly the Ti/Al ratio, Ti metal is first evaporated 

on the epi-structure shown in Figure 5.1(a), without AlN exclusion layer. The contact is then 

annealed at two different temperatures, one sample (S1) at 750 °C and another one (S2) at 

900 °C. The Ti/AlGaN/GaN interfaces are then examined using High-Resolution Transmission 
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Electron Microscopy (HRTEM) images. The HRTEM image of S1, annealed at 750 °C, shows 

few Ti-Al alloy clusters and an abrupt interface (Figure 5.2(a)). Here, the reactivity of Ti with 

AlGaN is low and, therefore, the formed alloy is small. However, S2, annealed at 900 °C, has 

a larger alloy formation (Figure 5.2(b)). Multiple compositions of alloy are formed, consisting 

of (i) Ti-Ga on the top, (ii) TiN at the interface, and (iii) Al + Ti + N + Ga. The formation of 

the alloy stems from N atoms reacting with Ti, to create a TiN alloy. This is observed below 

the contact metallisation. The greater reactivity between Ti and N can be seen at high annealing 

temperatures, which produces a greater TiN alloy formation. However, as a result of higher 

annealing temperature, a greater void formation is observed. This void formation can be 

reduced with incorporation of Al through the metallisation scheme. Al concentration in the 

barrier layer also increases reactivity of Ti from the metal contact and N from the barrier layer 

to form an AlTi2N alloy [119], [209].  

The addition of Al into the metallisation scheme is observed in Figure 5.3 with HRTEM 

imaging at 900 °C annealing temperature to clearly show alloy formation. At such high 

temperatures, (i) Al diffuses into the Ti layer of the metallisation to form Ti-Al bonds, and (ii) 

there is a high reactivity with oxygen at the Ti/Al interface which causes an AlOX-TiOX alloy 

to form. The increase in the Ti/Al ratio allows the formation of TiN layer, which is favourable 

to obtain a good ohmic contact. Decreasing the Ti/Al ratio, however, reduces the reactivity of 

Ti at the interface and, consequently, leads to the formation of voids. Therefore, a compromise 

between these two has to be found. A Ti/Al ratio of 6% has been found experimentally to be 

 

Figure 5.2: HRTEM images from University of Lille of Ohmic contacts at the Ti/Al0.28Ga0.72N 

interface after rapid thermal annealing, forming an alloy compositions at (a) 750 °C and (b) 900 °C. 
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the best Ti/Al/Ni/Au (12 nm/200 nm/40 nm/100 nm) multilayers for the ohmic contact 

metallisation [210].  

The challenge is how to form a good ohmic contact with a low 𝑅𝐶 for the epi-structure shown 

in Figure 5.2(b), including the AlN exclusion layer. We have observed that the presence of high 

Al concentration in the barrier and/or AlN exclusion layer, reduces the diffusion of metal in the 

barrier and significantly degrades 𝑅𝐶 . To overcome this difficulty, we used the same 

metallisation scheme as described above and recessed the source/drain metallisation at different 

depths to find an optimum contact as summarised in the following section. 

5.2.1.2.  Experimental Procedure 

In order to identify an optimal contact formation that provides lowest 𝑅𝐶, various ohmic contact 

configurations are tested. The GaN/Al0.28Ga0.72N/AlN barrier layers of the epi-structure (Figure 

5.2(b)) are dry etched using an Ar+ ion ebeam evaporation at different depths ranging from 0 % 

to 100 %, as illustrated in Figure 5.4. The condition used for the etching is Ar flow of 12 sscm 

and ion energy of 300 eV. The etching rate of the barrier is around 4 nm min-1. The source and 

drain contact metallisation, which consists of Ti/Al/Ni/Au (12 nm/200 nm/40 nm/100 nm) 

multilayers, are then evaporated onto this epi-structure. The metallisation for each etched depth 

is rapidly annealed at various temperatures ranging from 750 °C to 900 °C for 30 s in a nitrogen 

atmosphere. 

 

Figure 5.3: HRTEM image of ohmic contact at the Al/Ti/Al0.28Ga0.72N interface after rapid thermal 

annealing forming alloy compositions at 900 °C. 
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Upon annealing the contacts, an alloy forms due to metal diffusion. The alloy thickness is 

dependent on the Al volume beneath the metal. When the epi-structure is etched further into 

the GaN/Al0.28Ga0.72N/AlN layers, there is less Al volume beneath the metal contact. As a result, 

a greater quantity of alloy, and therefore greater alloy thickness, is formed during the annealing 

process; i.e. 75 % etching depth has greater alloy thickness than 0 % (no etching). 

Two analytical methods (TLM and Tri-layer TLM) are used in order to fully understand the 

mechanisms of contact resistance reduction through the proposed Ohmic contact optimisation. 

A. Transmission Line Model (TLM) 

The TLM makes use of an ungated HEMT, consisting of only Ohmic contacts (i.e. source and 

drain terminals), in order to measure its electrical properties and the quality of its Ohmic 

contacts [211]. The ungated HEMT shares the same name as the model used for measurement 

and will be referred to as an AlGaN/GaN TLM.  

 

Figure 5.4: Illustration of alloy thickness under different etching depths. Greater quantity of Al 

beneath the metal results in less alloy thickness (a) 0%, (b) 25%, (c) 50%, (d) 75% and (e) 100% 

(not to scale). 𝑅𝑆𝐾 is the sheet resistance beneath the metal contact and 𝑅𝑆𝐻 is the sheet resistance 

outside of the contact area. 
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The total resistance between the two Ohmic contacts of an AlGaN/GaN TLM, 𝑅𝑇, is extracted 

from the linear region of the I – V characteristics of devices at different lengths, Figure 5.5. 

The total resistance (𝑅𝑇) is given by the following equation: 

𝑅𝑇 = 2𝑅𝐶 +
𝑅𝑠ℎ𝐿𝑆𝐷

𝑊
 (5.1) 

 

where 𝑅𝐶 is the Ohmic contact resistance, 𝑅𝑠ℎ is the semiconductor sheet resistance between 

the Ohmic contacts, and 𝑊 is the width of the Ohmic contact. To note, the current flow outside 

the device width (𝑊) is eliminated via device-to-device isolation via implantation.  

In order to calculate 𝑅𝐶, the 𝑅𝑇 is extracted for various 𝐿𝑆𝐷. An illustration of the resultant 

graph is given in Figure 5.6(a). The slope of the resulting 𝑅𝑇 vs. 𝐿𝑆𝐷 graph is given as 𝑅𝑠ℎ 𝑊⁄  

and the y-intercept is given as 2𝑅𝐶 .  

RC is then given by:  

𝑅𝐶 =
𝑅𝑠𝑘𝐿𝑇

𝑊
 (5.2) 

 

Figure 5.5: An example of the IDS – VDS characteristics of an ungated HEMT and gated HEMT with 

similar structure. Negative resistance is seen in the gated HEMT due to the increased temperature 

induced by the increased electric field peak. 
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where 𝑅𝑠𝑘  is the semiconductor sheet resistance beneath one Ohmic contact, and 𝐿𝑇  is the 

transfer length. Current flow beneath the contact decays exponentially from the inner end of 

the contact towards the outer end. Therefore, 𝐿𝑇 is the length in which the current beneath the 

contact falls to 1 𝑒⁄  of the highest current, given at the inner ends of the contacts, as it transfers 

to the metal layer. The transfer length (𝐿𝑇 =
𝑅𝐶𝑊

𝑅𝑆𝐾
) is proportional to 𝑅𝐶.  

In order to identify and analyse the influence of the etched depth on alloy thickness and 𝑅𝐶, the 

TLM model, illustrated in Figure 5.6(a), is used [211]. 𝑅𝐶 is extracted for each etched depth 

and at different annealing temperatures ranging from 750 °C to 900 °C. To apply the TLM, the 

spacing between the ohmic contacts, 𝐿𝑆𝐷, is varied from 5 μm to 50 μm as shown in Figure 

5.6(b). 

B. Tri-Layer Transmission Line Model (TLTLM) 

In the case of AlGaN/GaN Ohmic contacts, where an alloyed layer can be formed, a more 

comprehensive model is needed. This model is known as a Tri-layer Transmission Line Model 

(TLTLM). The two interfaces, (i) alloy/semiconductor and (ii) metal/alloy, are considered in 

this model. The TLTLM allows for current distributions to be extracted by modelling the 

alloyed layer and the non-alloyed semiconductor layer to have separate and identifiable sheet 

resistances.  

The schematic cross section of an alloyed Ohmic contact and its corresponding TLTLM 

electrical network representation is given in Figure 5.7. Here, the specific contact resistance of 

the alloy/semiconductor interface (𝜌𝑐𝑢) and of the metal/alloy interface (𝜌𝑐𝑎) has a voltage drop 

across each interface. The current, therefore, flows laterally through the sheet resistance of the 

alloy/semiconductor interface (𝑅𝑠𝑢) and of the metal/alloy interface (𝑅𝑠𝑎); represented as 𝑖1 

and 𝑖2, respectively. The vertical current through the contact at the metal/alloy interface is given 

by 𝑖3. The total contact current flowing in/out of the contact (𝑖0) is given as: 

𝑖0 = 𝑖1(𝑥) + 𝑖2(𝑥) + 𝑖3(𝑥) (5.3) 

where 𝑥 is the distance between the leading edge of the contact (𝑥 = 0) and the desired current 

extraction location within the contact. 𝑖0 is independent of 𝑥 and is a unit value. 

An important factor for the distribution of current throughout the contact is the resistance of 
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the alloy sidewall of the contact (𝑅𝑓). A fraction of total current enters the sidewall (𝑖0(1 − 𝑓)), 

which is a function of the alloy depth (𝑡𝑑). Assuming that the current density across the area of 

the sidewall (𝑊 ∙ 𝑡𝑑) is uniform, 𝑅𝑓 is calculated as: 

𝑅𝑓 = 𝜌𝑐𝑢/(𝑊 ∙ 𝑡𝑑) (5.4) 

In order to calculate the current division factor ( 𝑓 ), the two entry points at the 

alloy/semiconductor interface (𝑖0𝑓) and metal/alloy interface (𝑖0(1 − 𝑓)) are extracted through 

𝑅𝑓. The resistive network is then solved to find 𝑖1, 𝑖2, and 𝑖3 from the derivation of current flow 

given in [211]. 

 

 

Figure 5.6: (a) Illustration of the TLM model, showing equations for extraction of its parameters 

(𝑅𝐶, 𝑅𝑆𝐻, 𝑅𝑆𝐾, 𝐿𝑇). (b) top-down view of used TLM and dimensions for parameters extraction.  
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Figure 5.7: TLTLM electrical network, showing alloy/semiconductor and metal/alloy sheet 

resistances (𝑅𝑠𝑎 and 𝑅𝑠𝑢), resistivities (𝜌𝑐𝑎 and 𝜌𝑐𝑢), and current flow (𝑖0𝑓 and 𝑖0(1 − 𝑓)), 

respectively. Additionally, 𝑅𝑓 is shown [211]. 

 

5.2.1.3.  Optimal Contact Resistance 

Figure 5.8 represents the 𝑅𝑆𝐾 /𝑅𝑆𝐻  ratio as a function of 𝑅𝐶  to denote the impact of sheet 

resistance beneath the contact extracted using the TLM method. The different data points at 

each recess depth correspond to different annealing temperatures. At recess depth of 0 %, 25 % 

and 50 %, there is relatively a small metal diffusion and, consequently, the contact metal is 

away from the 2DEG. This is due to the large Al volume beneath the metal contact, which 

induces less reactivity in Ti as described in Section 5.2.1.1. Therefore, the AlGaN barrier layer 

is the limiting factor for current to flow and hence 𝑅𝑆𝐾 ≈ 𝑅𝑆𝐻. 𝑅𝑆𝐾 is only greater than 𝑅𝑆𝐻 at 

75 % etching depth, where only 25 % of the barrier is left. This occurs due to bombardment of 

Ar+ ions that partially destroys the crystal alignment near the 2DEG during the etching process 

[210]. However, in this case, there is a small distance between the diffused metal and the 2DEG 

due to the large alloy thickness that has formed. Hence, there is an overall reduction of 𝑅𝐶. 

Like all etching depth configurations, the ohmic contacts for ’75 % etching depth’ are annealed 

at different temperatures (blue sphere symbols in Figure 5.8). As the annealing temperature 

increases, the alloy thickness increases as well as the void formation. This results in poorer 

alloy quality which increases 𝑅𝑆𝐾  but the alloy becomes increasingly closer to the 2DEG, 

reducing 𝑅𝐶 further. For ’75 % etching depth’ configuration, the optimal annealing temperature, 

to provide lowest 𝑅𝐶 ≈ 0.3 Ω.mm, that forms an alloy close enough to 2DEG with less crystal 

alignment damage, is found to be 850 °C. It is noted that the annealing temperature has a greater 

impact on ’75 % etching depth’ devices, when excluding the non-ohmic contacts. 
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It could be expected that at 100 % etching depth there would be the lowest 𝑅𝐶 and 𝑅𝑆𝐾 > 𝑅𝑆𝐻, 

which is not the case. As the GaN/Al0.28Ga0.72N/AlN layers are completely etched at the contact 

locations (see Figure 5.4(e)), the 2DEG at the contact is destroyed. On top of this, current flow 

can only access the contact at its inner edge as opposed to the whole contact width of the 

alloy/AlGaN interface. These contribute toward the significant increase of 𝑅𝐶. To note, 𝑅𝑆𝐾 is 

slightly larger than 𝑅𝑆𝐻 for 100 % etching as the AlGaN barrier has been completely etched. 

Therefore, in this instance, 𝑅𝑆𝐾 only considers the sheet resistance of the alloy and GaN buffer 

layer; both of which have higher resistance than AlGaN. 

5.2.1.4.  Current Distribution throughout Ohmic Contact 

The current distributions in the contact of ‘75 % etching depth’ with the lowest 𝑅𝐶 is calculated 

using the TLTLM model, previously described. Figure 5.9 presents the lateral current 

distributions at the alloy/AlGaN interface (𝑖1), the metal/alloy interface (𝑖2), and the vertical 

current at the metal/alloy interface (𝑖3). These results show an exponential decrease in current 

dispersion which occurs in 𝑖1 as the majority of current enters the inner edge of the contact. 

 

Figure 5.8: Ratio of 𝑅𝑆𝐾/𝑅𝑆𝐻 versus 𝑅𝐶. The different data points at each etching depth correspond 

to different annealing temperatures. 75 % etching depth provides 𝑅𝑆𝐾 > 𝑅𝑆𝐻 whereas other etching 

provides 𝑅𝑆𝐾 ≈ 𝑅𝑆𝐻. This is due to (i) minimal diffusion of alloy and a large volume of AlGaN 

barrier beneath the contact in 0 %, 25 % and 50 % etching, and (ii) damage to the 2DEG in 100 % 

etching. 
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The current density at the inner edge is at its peak across the lateral span of the contact. The 

high resistance alloy limits the current flowing through to the metal contact at the inner edge. 

Current flows laterally away from the inner edge in the alloy/AlGaN interface to where lower 

resistance alloy clusters have formed. Then current is able to flow vertically through the metal 

layer and therefore an exponential increase in 𝑖3 occurs. 

5.2.1.5.  Transfer Length of Ohmic Contact 

The transfer length (𝐿𝑇), that characterises the current distribution beneath the contact [212], is 

found to be ∼0.4 μm for the lowest 𝑅𝐶 configuration. To illustrate the relationship between  

𝐿𝑇  and etched barrier depth, 2D drift-diffusion simulations have been carried out. 2D 

distributions of the current density for 0 % and 75 % etched barrier depths are shown in Figure 

5.10. This shows that with increased etching depth (e.g. 75 %) then  

𝐿𝑇  reduces. With deeper etching depth, a greater electric field is induced between the 

metal/alloy and the 2DEG and more energy is induced for charge carriers to enter/exit into or 

 

Figure 5.9: (a) Lateral current distribution at the alloy/AlGaN interface (𝑖1), at the metal/alloy 

interface (𝑖2), and the current entering/exiting in/out of the contact (𝑖3). (b) Illustration of the 

corresponding current distributions for 𝑖1, 𝑖2, and 𝑖3. 
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out of the contact at its inner edge, not shown. Hence, the current density at the inner edge of 

the contact will be higher, reducing 𝑅𝐶. 

Using the TLM model, 𝐿𝑇  is extracted and compared with 𝑅𝐶  for each ohmic contact 

configuration, etching depth and annealing temperature, in Figure 5.11. As expected, 𝐿𝑇  is 

generally proportional to 𝑅𝐶 , independently of the contact configuration. However, a 

significant issue may occur with low 𝐿𝑇. A high current density at the inner edges of the contact 

could result in a large increase in self-heating at this location, this was investigated in more 

details in Chapter 3. The heat dissipates throughout the device and contributes to degradation 

and potential failure of the device [140]. 

 

 

Figure 5.10: 2D current density distributions of two Ohmic contact configurations (a) 0 % and (b) 

75 % etched barrier depths. The 𝐿𝑇 decrease as etching depth increases is caused by larger electric 

field between the contact metal and 2DEG. 
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5.2.2. Contact Overgrowth for Self-Heating Reduction 

Although low 𝑅𝐶 has been achieved through etching Ohmic contacts to 75 % of the barrier 

layer, Section 5.2.1, the issue of increased temperature due to reduced 𝐿𝑇 is now addressed. 

The reduced 𝐿𝑇 with reduced 𝑅𝐶 results in larger peaks in temperature at the inner ends of the 

Ohmic contacts due to the increased electron density in the local area. We aim to reduce this 

electron density whilst maintaining the low 𝑅𝐶 achieved from Section 5.2.1.3. To manage the 

thermal issue, we propose an enhanced device architecture. 

 

 

Figure 5.11: Calculated 𝐿𝑇 versus measured 𝑅𝐶. Device with 75 % etching depth has the lowest 𝑅𝐶 

at 850 °C annealing temperature [211]. 

 

Figure 5.12: Conduction band through the metal/overgrowth layers showing the difference in 

conduction between the two.  
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The effect that this overgrowth layer has on its vertical conduction band is illustrated in . From 

this, we can see that from the metal/overgrowth interface onwards that the conduction band 

slightly increases, maintaining negligible increase in resistance. 

In order to confront the issue of small 𝐿𝑇 that causes high current density at the inner-end of 

the contact, and therefore high temperature in the local area, we extend the overgrowth layer 

from the metal towards the AlGaN barrier at an angle, illustrated in Figure 5.13. With this 

modification, the vertical electric field significantly reduces from the inner edges of the 

overgrowth/channel interface towards the inner edges of the metal/overgrowth interface when 

compared to the conventional HEMT. Therefore, with increased 𝐿𝑇, the temperature peaks at 

the inner edges of the S/D contacts, discussed in Chapter 3, can be reduced.  

5.3. Schottky Contact Optimisation for Gate Leakage Reduction 

The optimisation of Schottky contacts is crucial for gate control in GaN-based HEMTs in order 

to achieve high frequency and power performance. To realise this aim, the gate leakage current 

is required to be reduced in order to reduce breakdown voltage and, thus, improve microwave 

power performance. Normally-ON devices suffer from large gate leakage that stems from low 

Schottky barrier height, which is enhanced with the high negative gate bias required to switch 

the device to the ‘OFF’ state. For the AlGaN/GaN HEMTs, the threshold voltage is 𝑉𝑇𝐻 < -3 V.  

In ideal devices, the Schottky barrier is defined as the difference between the work function of 

the gate metal and the electron affinity of the semiconductor, as described in Section 2.2.5.2. 

However, the above theory is not always true, as demonstrated in Figure 5.14, showing the 

Schottky barrier height of various metals deposited on AlGaN against their work function. 

 

Figure 5.13: Enhanced overgrowth architecture whereby overgrowth layer is grown at an angle to 

reduce lateral electric field peak. 
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Therefore, using high metal work function to improve Schottky barrier height may not always 

be the solution towards optimising Schottky contact metallisation. This can be seen when 

comparing the theoretical results extracted from Eqn (2.10) where 𝑥𝐴𝑙0.3𝐺𝑎0.7𝑁 = 2.3 kJ mol-1. 

Refractory metals with high work function such as Mo, Ni, or Pt are commonly deposited after 

the native oxide of the AlGaN top surface is removed to fabricate rectifying contacts [213], 

[214]. However, these high work function metals do not necessarily increase the Schottky 

barrier height. Metals that have high Schottky barrier height such as Cu, however, have 

relatively high leakage current due to roughness at the metal/AlGaN interface. Instead, a new 

TiN Schottky contact metallisation is proposed in order to provide high Schottky barrier height 

and linearity and low gate leakage of AlGaN/GaN HEMT devices. The purpose for using TiN 

is due to its thermal stability and its low interface roughness when annealed to AlGaN. TiN has 

a low work function, which would be an issue in terms of obtaining a high Schottky barrier if 

the theoretical relationship between Schottky barrier height and work function was true 

experimentally. However, since Figure 5.14 shows that this relationship is not the case 

experimentally then the work function is not relevant towards our aim of increasing Schottky 

barrier height. Instead, the Schottky barrier height is increased by creating a Schottky diode at 

the TiN/AlGaN interface through quasi p-type dopants, described in Section 5.3.4.1. 

 

Figure 5.14: Relationship between Schottky barrier height and work function for various metals 

that are deposited on AlGaN layer obtained via I – V. No clear correlation is shown compared to 

theoretical results from Eqn (2.10) where 𝑥𝐴𝑙0.3𝐺𝑎0.7𝑁 = 2.3 kJ mol-1. 
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5.3.1. Current Schottky Contact Technology 

On AlGaN/GaN epitaxies, the Schottky contact constitutes a difficult technological step; 

especially on epitaxies grown by MBE. In the past, several works were carried out to optimise 

the Schottky contact and understand the contact formation and conduction mechanisms. Post 

annealing at high temperature after depositing metal is the common method used to improve 

the Schottky contact behaviour [204], [215]–[219]. Some authors proposed to deposit a 

material such as copper (Cu), Al or SiN between the Schottky metal and the semiconductor to 

pump the surface oxygen. This generates n-type doping at the metal/semiconductor interface, 

which forms an ultra thin interfacial oxide layer (1 nm) such as CuOx, AlOx and SiOx after 

applying high temperature annealing in a vacuum [216], [217], [220]–[222]. Other propositions 

add nitrogen on surface to fill in the nitrogen vacancies. This forms n-type doping, which 

results in the reduction of 𝛷𝑏𝑛 via the shift of Fermi level near to the conduction band [204], 

[216]–[219], [222]–[225]. Other works proposed to deposit a thin oxide layer such as TiO2, 

Al2O3 [16], [107], [140], [199], [200], [204]–[207], [209]–[212] or to form an oxide layer from 

an O2 annealing [218] or a chemical treatment [223]. Another method consists of removing the 

native oxide at the surface of AlGaN by a chemical pre-treatment [213], [214], [222]. Lastly, a 

low temperature GaN cap can be grown [226]. With these works, 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒 and the 𝛷𝑏𝑛 can be 

improved but it requires a complicated technological process. Therefore, we propose a new and 

simple method of forming a TiN-based Schottky contact on an AlGaN barrier.  
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5.3.2. TiN Gate Technology 

5.3.2.1.  Device Fabrication 

We propose a rectifying contact that is formed by Au/TiN sputtering and then lift-off using 

optical and e-beam lithography for a 2 µm and 100 nm gate length, respectively. The optical 

lithography is a quick process that is easy to perform and cost-effective for technological 

optimisation. As for e-beam lithography, this process is more accurate for devices with gate 

lengths of a few hundred nanometers. The e-beam lithography is performed under the following 

conditions: 100 W radio frequency power at 13.56 MHz, 30 sccm argon (Ar) flow, and 220 V 

DC bias for an initial pressure of 3 × 10-7 mbar. The deposition rate is around 3.4 nm min-1. 

The fabricated structures are known as Gate Transmission Line Method (G-TLM), where the 

source-to-gate distance is 1 µm. An overview of an AlGaN/GaN G-TLM and HEMT is given 

in Figure 5.15 The average value of 𝑅𝐶 is 0.7 Ω.mm and is associated to 𝜌𝐶 of 9 × 10-6 Ω.cm2. 

From Hall measurements, a 2DEG sheet density of 8 × 1012 cm-2, a carrier mobility of 1670 

cm2 V-1s-1 and a sheet resistance of 490 Ω sq-1 are obtained. The threshold voltage, 𝑉𝑇𝐻 ≈ -2.7 

V. Before the gate metallisation, samples are deoxidised using a HCl:H2O (1:1) solution for 90 

s, followed by in-situ Ar+ plasma etching at 150 W for 20 s, corresponding to 510 V DC bias, 

with an argon gas flow keep at 25 sccm. 

5.3.2.2.  TiN Conduction Mechanisms 

We aim to achieve a gradient of strain within the AlGaN barrier layer in order to induce quasi 

p-type dopants that act as a Schottky diode around the TiN/AlGaN interface as shown in Figure 

5.16(a). Firstly, AlGaN is succumb to tensile strain when grown upon GaN. In order to 

compensate for this, the TiN layer is required to have compressive strain with the same 

             

Figure 5.15: Overview of AlGaN/GaN G-TLM (left) and HEMT (right). 
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amplitude as the tensile strain of the AlGaN barrier layer as shown in Figure 5.16(b). This 

achieves a high preservation of strain within the TiN layer. Finally, Figure 5.16(c) shows that 

a high strain preservation can be achieved by lowering the TiN thickness. In addition to this, 

the target-substrate distance can be changed to preserve the strain. 

 

It is well known that TE and TFE conduction mechanisms are dominant for TiN Schottky 

contacts. The two probable conduction mechanisms for Schottky contacts are TE and TFE, 

indicated by ① and ②, respectively, in Figure 5.17, the annealing effect alters the state of the 

AlGaN surface. This has been suspected to form a TiO2 layer between TiN and AlGaN (Figure 

5.17(b)) However XPS data given in Section 5.3.4 shows that there is no TiO2 layer. Instead, 

 

 

Figure 5.16: (a) Impact of TiN thickness on extrinsic stress within TiN layer, (b) types of strain 

occurring within TiN and AlGaN layers, (c) strain gradient within AlGaN layer with thinner TiN 

layer that generates quasi p-type dopants. 
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after annealing the TiN metallisation, the strain at the surface of the AlGaN barrier layer is 

reduced, as described in Section 3.2.2.3. This reduction causes a strain gradient in the AlGaN 

barrier that leads to quasi-p-type doping due to conduction band edge lowering at the AlGaN 

barrier surface, as illustrated in Figure 5.16(c). The effect of this conduction band lowering is 

a Schottky diode-like behaviour (Figure 5.17(c)) whereby leakage current is severely limited. 

 

Figure 5.17: Conduction mechanism of TiN Schottky contact on Al0.32Ga0.68N/GaN HEMT (a) 

before annealing, (b) after annealing with TiO2 layer, and (c) after annealing without TiO2 layer, 

where tDR is the depletion region thickness. 

5.3.3. Device Performance 

Measurements of 𝛷𝑏𝑛 , ideality factor (𝜂 ) and gate leakage current (𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒 ) are taken at 

various annealing and deposition stages for a range of TiN thicknesses from 2.5 to 60 nm. The 

𝐼𝐺𝑆 – 𝑉𝐺𝑆 is usually used to extract 𝜂 of Schottky barrier diodes where the slope of the linear 

region gives 𝑞/𝜂𝑘𝑇. The gate leakage current is given at VGS = -30 V. A summary of the process 

and measurements for each TiN thickness for 𝐿𝐺  = 2 µm is given in Table 5.1 – Table 5.3. To 

note, the fabrication process for all TiN thicknesses have been optimised for 5 nm. This was 

done because it was known that strain preservation, later described in this Section, could be 

achieved at low TiN thicknesses. To note, the process could be optimised for 2.5 nm TiN 

thickness to potentially achieve better properties than shown in Table 5.1. 

Prior to annealing, a relatively low 𝛷𝑏𝑛 with 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒 in the order of uA is observed for all TiN 
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thicknesses. In addition, the Schottky contact also has the behaviour of a quasi-Ohmic contact, 

since 𝜂  is greater than 4 for all devices. After annealing at 500 oC for 40 mins in an N2 

atmosphere, good results have been obtained when the TiN thickness is less than 10 nm. It 

appears that for these TiN thicknesses (< 10 nm), SiO2/Si3N4 passivation does not help to 

improve the Schottky contact, it instead degrades. To recover these degraded properties, the 

devices were annealed at 350 oC for 72 hours under N2 conditions. From the above tables, it is 

clear that annealing at higher temperature (> 690 oC) causes significant degradation of the 

Schottky contact properties. 

Table 5.1: The impact of annealing and passivation on Schottky barrier height, linearity and gate 

leakage for TiN thicknesses of 2.5 nm and 5 nm at 𝐿𝐺 = 2 µm.  

 TiN Thickness 2.5 nm TiN Thickness 5 nm 

 Фbn  

[eV] 

𝜂 Ileakage  

[A/mm] 

Фbn  

[eV] 

𝜂 Ileakage  

[A/mm] 

Before Annealing 0.584 14.31 810 µ 0.507 9.69 3 m 

Annealing 500 oC for 40 mins in N2 0.878 2.17 70 n 1.059 1.60 60 n 

SiO2/Si3N4 Passivation deposition 0.821 2.05 4 µ 0.869 1.99 370 n 

Annealing 350 oC for 72 h in N2 0.769 2.57 560 n 1.064 1.46 100 n 

Annealing 350 oC for 3 weeks in N2 0.695 7.64 270 n 0.905 1.87 130 n 

Annealing 690 oC for 40 mins in N2 0.433 14.42 840 µ 0.386 15.84 2 m 
 

 

 

 

Table 5.2: The impact of annealing and passivation on Schottky barrier height, linearity and gate 

leakage for TiN thicknesses of 10 nm and 20 nm at 𝐿𝐺 = 2 µm. 

 TiN Thickness 10 nm TiN Thickness 20 nm 

 Фbn  

[eV] 

𝜂 Ileakage  

[A/mm] 

Фbn  

[eV] 

𝜂 Ileakage  

[A/mm] 

Before Annealing 0.637 8.70 150 µ 0.635 4.15 70 µ 

Annealing 500 oC for 40 mins in N2 0.810 2.37 210 n 0.800 1.97 910 n 

Annealing 690 oC for 40 mins in N2 0.896 1.61 150 n 0.793 2.23 370 n 

Annealing 800 oC for 40 mins in vacuum  0.477 6.53 380 µ  380 µ 

SiO2/Si3N4 Passivation deposition 0.892 1.60 850 n  

Annealing 350 oC for 72 h in N2 0.889 1.63 130 n 0.777 2.07 2  µ 

Annealing 350 oC for 3 weeks in N2 0.899 1.61 120 n 0.717 2.63 660 n 
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The optimal Schottky contact is obtained for when the TiN thickness is < 10 nm is marked in 

red. This is potentially due to the higher preservation of the strain within the TiN as its thickness 

is reduced, as shown in Figure 5.16(a). This is a strong indication that the obtained performance 

is related to the quality of the strain within the gate metal.  

5.3.3.1.  Charge Trapping 

The overall performance of our optimal device (TiN thickness of 5 nm and 𝐿𝐺   = 2 µm) is 

provided via Capacitance-Voltage (C – V), Conductance-Voltage (G – V) and ID – VD 

measurements. Figure 5.18 displays the C – V and G – V profiles. The measurement frequency 

range varies from 10 kHz to 1 MHz with an AC voltage amplitude of 10 mV. A time delay of 

100 ms after setting the DC bias is used for all measurements. In enhancement regime, the 

capacitance is constant regardless of the frequency. This suggests that a negligible TiN 

diffusion forms within the AlGaN barrier layer, even at annealing at 500 oC. Furthermore, both 

forward and reverse DC bias sweeps were made and no hysteresis was observed. This indicates 

that very low trapping density forms at the TiN/AlGaN interface. The frequency dispersion of 

the corresponding conductance at 𝑉𝐺𝑆 ≈ -2 V suggests that deep traps are potentially located 

within the GaN buffer [204]. 

In order to test the effects of drain and gate lag at higher frequencies that are not reachable by 

the C – V technique, the IDS – VDS characteristics with several quiescent conditions are 

measured for 𝑉𝐺𝑆 = 0 V to -3 V with -1 V step, shown in Figure 5.19. The following quiescent 

biases are used (i) 𝑉𝐷𝑆0 = 0 V and 𝑉𝐺𝑆0 = 0 V used as a reference, (ii) 𝑉𝐷𝑆0 = 0 V and 𝑉𝐺𝑆0 =     

-3 V used to induce surface trapping, and (iii) 𝑉𝐷𝑆0 = 10 V and 𝑉𝐺𝑆0 = -3 V used to induce bulk 

 

Table 5.3: The impact of annealing and passivation on Schottky barrier height, linearity and gate 

leakage for TiN thicknesses of 40 nm and 60 nm at 𝐿𝐺 = 2 µm. 

 TiN Thickness 40 nm TiN Thickness 60 nm 

 Фbn 

[eV] 

𝜂 Ileakage  

[A/mm] 

Фbn  

[eV] 

𝜂 Ileakage  

[A/mm] 

Before Annealing 0.661 4.21 90 µ 0.644 4.66 40 µ 

Annealing 500 oC for 40 mins in N2 0.829 1.97 150 n 0.796 2.13 40 µ 

Annealing 690 oC for 40 mins in N2 0.819 2.04 370 n 0.811 2.33 130 n 

SiO2/Si3N4 Passivation deposition 0.845 1.95 340 n 0.809 2.39 130 n 

Annealing 350 oC for 72 h in N2 0.845 1.91 570 n 
 

Annealing 350 oC for 3 weeks in N2 0.832 1.98 360 n 
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Figure 5.18: Post-annealing C – V and G – V characteristics of AlGaN/GaN HEMT with new TiN 

Schottky contact metallisation and TiN thickness of 5 nm as a function of frequency from 10 kHz 

to 1 MHz. 

 

Figure 5.19: Post-annealing IDS – VDS characteristics of AlGaN/GaN HEMT with new TiN Schottky 

contact metallisation. 
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trapping and surface trapping. Each measurement is taken with a 200 ns pulse width and 20 % 

duty cycle (i.e. 1 µs period). From these results, we observe little degradation in current for all 

conditions, which shows that little bulk and surface trapping occurs within this device. The 

degradation of current has been significantly reduced as a result of implementing this new gate 

technology when compared to devices used in previous chapters. 

5.3.3.2.  Gate Length Consideration 

This new Schottky process has first been tested using optical lithography (𝐿𝐺  = 2 µm) and then 

adjusted to analyse sub-micrometer gate length ( 𝐿𝐺   = 100 nm) devices using e-beam 

lithography.  

For TiN thickness of 5 nm, a comparison between 𝐿𝐺  = 100 nm and 2 µm before and after 

annealing is given in Figure 5.20. A large drop of the leakage current is observed after annealing 

with a great enhancement of 𝛷𝑏𝑛. For 𝐿𝐺 = 2 µm, the optimum values are obtained at 500 °C 

with a reverse leakage current of 10 nA mm-1 and 𝛷𝑏𝑛of 1.06 eV associated to an ideality factor 

of 1.46. With regards to the 100 nm gate length, the optimum values are obtained at 600 °C 

with a reverse leakage current of 10 pA mm-1 and a 𝛷𝑏𝑛 of 0.94 eV associated to an ideality 

factor of 1.41. This shows a significant drop of 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒 (3 orders of magnitude) with respect 

to 𝐿𝐺  = 2 um. This shows that this technique can be used for both small and large gate lengths. 

  

       

Figure 5.20: IGS – VGS measurement for different annealing temperature and gate length for TiN/Au 

Schottky contact and 𝑊 = 100 µm [227], [228]. 
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To note, the annealing temperature for each gate length is different to account for the difference 

in metal contact surface. 

5.3.4. TiN Diffusion 

X-ray photoelectron spectroscopy (XPS) data given by Figure 5.21 revealed two peaks of 

intensity at binding energies of 459 eV and 454.5 eV representing TiN at different orientations 

within (a) AlGaN barrier and (b) TiN layer. It is shown from Figure 5.21(a) that TiN diffuses 

into the AlGaN barrier layer, which contributes towards the strain gradient illustrated in Figure 

5.16(c). This strain gradient is depicted through XPS data by the decrease in Ti2p intensity 

below 454.5 eV. As there is no change in characteristic of Figure 5.21(b) and no additional peak 

of intensity at 457.5 eV (binding energy of TiO2) occurs, we determine that no oxidation of the 

TiN layer at the AlGaN surface occurs. 

The XPS experiments are performed with a system based on 5600 Physical Electronics model 

operating at a base pressure of 2.5×10-10 mbar, employing a hemispherical analyzer and a 

monochromatic Al Kα excitation source (hν = 1486.6 eV). The pass energy is set at 12 eV. 

Under these conditions, the overall resolution as measured from the FWHM of the Ag 3d5/2 

line is 0.45 eV. All XPS spectra are collected at an emission angle of 45 ° with respect to the 

surface normal. The Binding Energy (BE) scale is calibrated using the Au 4f7/2 peak position 

at 84 eV for a polycrystalline gold foil reference. 

5.3.4.1.  Quasi-p-type Doping Layer 

The log – log plot of the IGS – VGS characteristics, given in Figure 5.22(a), reveals two 

behaviours: (i) Ohmic contact behaviour (V1.1 slope), followed by (ii) rectifying behaviour 

  

Figure 5.21: Ti2p spectrum in the (a) AlGaN barrier layer and (b) TiN layer. 
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(V18.5 slope). As the AlGaN layer is unintentionally n-type doped, the rectifying behaviour 

(V18.5 slope) leads us to believe that doping modulation (quasi-p-type doping) occurs beneath 

the TiN layer. In addition, the beginning of this rectifying regime is shown to be temperature 

dependent (Figure 5.22(b)), which supports the theory of quasi-p-type doping. The raw data 

from which Figure 5.23(b) is extracted from is given in Figure 5.23. Finally, in support of 

Figure 5.24(a), the model given in [229] is used with the assumption of a depletion layer 

thickness of 5 nm to extract the n and p concentrations (Figure 5.24), which shows Schottky 

diode-like characteristics. 

  

 

 

   

Figure 5.22: (a) IDS – VGS characteristics, showing a rectifying behaviour with two mechanisms of 

current increase as a result of quasi-P/N junction of TiN/AlGaN. (b) Reduction of 𝑉𝑇𝐹𝐿 with 

increased temperature, showing that these mechanisms impact the 𝐼𝐺𝑆 – 𝑉𝐺𝑆 characteristics. 

   

Figure 5.23: Raw data of (a) reverse current and (b) forward current under various temperatures.  
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Figure 5.24: Extracted n and p concentration using the model given in [229] with Figure 5.22(b) 

whilst assuming a depletion layer of 5 nm, showing Schottky diode characteristic.  

5.4. Step-Graded AlGaN Barrier with AlN spacer and InGaN channel Structure 

New AlGaN/GaN HEMT structures are proposed to improve the performance and current 

handling capabilities. These device structures are simulated using Synopsys’ Sentaurus TCAD 

to characterise their electronic properties. Through material and geometric optimisation, these 

structures achieve increased thermal conductivity, 2DEG density and charge carrier mobility 

compared to conventional AlGaN/GaN HEMT structures.  

5.4.1. Device Structures 

A conventional AlGaN/GaN HEMT structure is used to compare with the optimised structures, 

illustrated in Figure 5.25(a). Architectural additions to the conventional AlGaN/GaN HEMT 

are constructed to form optimised AlGaN/GaN HEMT structures. These newly proposed 

structures are illustrated in Figure 5.25(b)-(d) and descriptions of their architecture are provided 

in the following: 

i. Conventional HEMT – A conventional AlxGa1-xN/GaN HEMT, where x = 0.25 are 

grown in the [0001] Ga-face direction on a Si substrate. The epi-structure consists 

of a 10 nm AlN nucleation layer formation after the substrate and an undoped GaN 

buffer layer with a thickness of 2.0 µm is grown after. Then, a thin channel layer of 

5 nm is defined inside the buffer layer, followed by the growth of a thin AlGaN 

interfacial spacer layer of 2 nm. Finally, an 18 nm barrier layer of the device was 
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deposited with a 1 nm GaN cap layer and SiN passivation above the cap layer. 

ii. Structure 1 – Based on the structure of the conventional AlGaN/GaN HEMT, an 

additional step-graded AlxGa1-xN barrier is formed in place of the AlGaN barrier, 

where x = 0.2 in the first layer, x = 0.35 in the second, and x = 0.5 in the third (from 

top to bottom). Each step-graded layer has a thickness of 6 nm. The increasing 

concentrations increase the strain within the barrier layer, due to increased lattice 

mismatch between the AlGaN barrier and GaN buffer, without succumbing to strain 

relaxation. 

iii. Structure 2 – Based on the structure of Structure 1, an AlN spacer is implemented 

into Structure 2 to improve the electron mobility. The implementation of the AlN 

spacer layer reduces the strain along the AlN/GaN interface [76], whilst improving 

the lattice of the AlGaN barrier layer. The strain reduction is a result of the larger 

lattice mismatch between the spacer and channel layer when compared with 

Structure 1.  

iv. Structure 3 – Based on the structure of Structure 2, an InGaN channel is 

implemented in Structure 3 to the lower conduction band energy compared to GaN, 

providing greater conduction band discontinuity between the channel and spacer 

layers. As a result, carrier confinement and high power capabilities are increased. 

 

Figure 5.25: Schematic diagram of simulated GaN-based HEMT showing (a) conventional 

AlGaN/GaN HEMT; (b) step-graded AlGaN barrier layer – Structure 1; (c) AlN spacer layer – 

Structure 2; (d) InGaN channel layer – Structure 3. For conventional AlGaN/GaN HEMT: x = 0.25; 

for Structure 1 – 3: x1 = 0.2, x2 = 0.35, x3 = 0.5. 
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5.4.2.  Simulation Methodology 

The new structures are simulated using the commercial 2D device simulation software 

Sentaurus Synopsys TCAD. The dimension and doping parameters used to build these 

structures are given in Table 5.4, where the gate contact of the device is set to be Schottky type 

with a metal work function, 𝛷𝑀𝐺  = 4.4 eV. The simulation flow for these structures is illustrated 

in Figure 5.26. The control parameters [230], namely the structure geometry, doping 

concentrations and Al mole fractions inside the barrier layer are defined. The layer epi-structure 

is then defined along with the type of materials, doping levels, mole fractions, and the meshing 

criteria of each region. Subsequently, emulations of source, drain and gate metallisation 

patterning is done and is used for interpreting electrodes and thermode of the devices followed 

by 2D doping profiles of the doping around the source and drain electrodes. The final meshing 

is applied in order to ensure the heterointerfaces to be in a sufficiently tight configuration, 

especially where large variations in 2DEG concentration are observed within the short 

distances. Sentaurus Visual is used to extract electrical properties such as 2DEG concentration 

and mobility, electric fields, and carrier velocity. To generate the IDS – VDS and IDS – VGS 

Table 5.4: Parameters used for the simulation of devices. 

Parameters Conventional 

AlGaN/GaN HEMT 

Proposed Final Structure (Structure 3) 

Gate Length, LG 0.8 µm 0.8 µm 

Source-gate length, LSG 1.0 µm 1.0 µm 

Gate-drain length, LGD 3.0 µm 3.0 µm 

GaN cap thickness, tc 3 nm 3 nm 

GaN cap doping, Nc 5 × 1018 cm-3 5 × 1018 cm-3 

AlGaN barrier layer Ungraded – 25 % Al Step-graded (3 layers) – 50 %, 35 %, and 

25 % Al 

*AlGaN barrier thickness, tbr 18 nm 18 nm, 21 nm, 24 nm, 27 nm, 30 nm 

AlGaN barrier doping 2 × 1018 cm-3 2 × 1018 cm-3 

Spacer layer AlGaN AlN 

*Spacer thickness, tsp 2 nm 2 nm, 3 nm, 4 nm, 5 nm 

Spacer doping, Nsp 1 × 1014 cm-3 1 × 1014 cm-3 

Channel layer GaN InGaN 

Channel thickness, tch 5 nm 5 nm 

*GaN Buffer thickness, tbf 2 µm 2 µm, 2.5 µm, 3 µm 

GaN Buffer doping, Nbf 1 × 1015 cm-3 1 × 1015 cm-3 
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characteristics, a drain bias of 𝑉𝐷𝑆 = 36 V was applied for all simulation conditions. For the IDS 

– VDS characteristics, two levels of gate voltage were applied, 𝑉𝐺𝑆 = ±2 V. Spontaneous and 

piezoelectric components were taken into account for the built-in polarisation model which 

computes the formation of interface charges at the heterointerfaces due to the polarisation 

divergence [231]. The anisotropic dielectric tensor is used concerning the reduction in 

polarisation due to converse piezoelectricity [232]. 

 

 

Figure 5.26: Simulated structure formation flow for GaN-based HFET design. 

 

5.4.3. Process Design Considerations 

The influence of barrier spacer and channel layer modification to the conventional AlGaN/GaN 

HEMT on DC output and transfer characeteristics is given in Figure 5.27(a)-(c) and Figure 

5.28(a), (b), respectively. The following sub-sections will discuss the impact that each proposed 

structure has on these characteristics. A comparison of the improved electronic properties for 

each structure to be discussed is provided in Table 5.5. 
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Figure 5.27: IDS – VDS characteristics at 𝑉𝐺𝑆 = ±2 V for (a) conventional and step-graded AlGaN 

barrier HEMT (Structure 1); (b) AlN spacer HEMT (Structure 2); and (c) InGaN channel HEMT 

(Structure 3). 

 

 

Figure 5.28: (a) IDS – VGS characteristics at 𝑉𝐷𝑆 = 36 V in logarithmic scale and (b) normalised IDS 

versus (VGS – VTH) curves for all structures. 
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5.4.3.1.  Step-Graded Barrier Layer – Structure 1 

It is known that a step-graded AlGaN barrier layer can significantly improve device 

performance [233]–[235]. To support this, Figure 5.27(a) shows the DC output characteristics 

at 𝑉𝐺𝑆 = ±2 V Structure 1 compared to the conventional AlGaN/GaN HEMT. With this structure, 

a 63 % increase in peak current density (up to 3.3 A mm-1) is achieved at 𝑉𝐺𝑆 = +2 V. From 

Figure 5.29(a), the transfer characteristics depict the increase in current density by 1.26 A mm-

1 with Structure 1. This is a result of larger band discontinuity at the AlGaN/GaN interface from 

the increased Al concentration in Structure 1 compared to the conventional AlGaN/GaN HEMT. 

This induces greater 2DEG sheet density in the channel region due to enhanced 𝑃𝑃𝐸 effect that 

stems from the increased lattice mismatch between Al0.5Ga0.5N and GaN. This increase in 

2DEG sheet density from the conventional AlGaN/GaN HEMT to Structure 1 is shown in a 

2D-DD simulation given in Figure 5.30(b). Although this increase in Al concentration is proven 

to be beneficial for device performance, the reliability of the device will degrade as the crystal 

Table 5.5: Simulated results of DC characteristics for each device structure. 

HEMT 

Structures 

|VTH| 

[V] 

Ion 

[A mm-1] 

Ioff 

[A mm-1] 

Ron 

[Ω mm-1] 

Rout 

[Ω mm-1] 

Conventional 3.509 1.944 1.175 2.588 616.2 

Structure 1 6.208 3.288 2.659 2.294 226.8 

Structure 2 8.368 4.014 3.410 2.219 40.19 

Structure 3 8.415 4.035 3.505 2.202 38.69 
 

 

Figure 5.29: (a) Depth profile for electron density for conventional AlGaN/GaN HEMT and 

Structures 1-3. (b) Closer visual focusing on the density at the interfaces from the depth of 50 nm 

and 90 nm. 
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quality of the interface, and thus electron mobility, will degrade [236]. The electronic 

characteristic simulation of these devices, given in Figure 5.30, clearly shows this degradation 

in electron mobility and increase in 2DEG sheet density. 

A deeper investigation into the profile of electron density throughout the device is provided in 

Figure 5.29(b). A large increase in maximum sheet density is found for Structure 1 (1.66 × 1018 

cm-3) compared to the conventional AlGaN/GaN HEMT (0.39 × 103 cm-3). Interestingly, large 

numbers of electrons flow through the interfaces of each step-graded barrier layer. This 

significantly minimises the surface trapping redistribution due to an increase in trap energy 

induced by the repulsion of mobile electrons in the step-graded barrier. As a result, current 

collapse is significantly reduced, which allows for vast improvements in device performance. 

5.4.3.2.  AlN Spacer Layer – Structure 2 

Structure 2 is a modification of Structure 1 whereby an AlN spacer layer is implemented. The 

addition of this layer is designed to improve electron mobility as well as surface lattice 

arrangements. However, for graded structures, the total strain inside the barrier will decrease 

due to the reduction in lattice mismatch between the AlGaN and AlN configurations. Despite 

this, significant improvements to the 2DEG concentrations and electron mobility are observed 

through the following simulation results. The IDS – VDS curves given in Figure 5.27(b) shows 

a 22 % increase in 𝐼𝑜𝑛  (4.014 A mm-1) and 48 % increase in 𝐼𝑜𝑓𝑓  (3.410 A mm-1) when 

compared with Structure 1 at 𝑉𝐺𝑆 = +2 V and 𝑉𝐺𝑆 = -2 V. The transfer characteristics in Figure 

5.28 also show improvement in device performance. This behaviour is strongly related to the 

increment of mobility caused by the lowering of alloy scattering [237], [238].  

 

Figure 5.30: Current density and electron mobility distribution for (a) conventional AlGaN/GaN 

HEMT; (b) Structure 1; and (c) Structure 2. 
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The electron density within the channel layer is enhanced to 2.2 × 1018 cm-3 in Structure 2, as 

shown in Figure 5.29(b) and Figure 5.30(c). The potential differences across the AlN spacer 

layer produces larger effective conduction band offset: 

Where Δ𝐸𝑐,2  and Δ𝐸𝑐,1  are the effective conduction band offsets between the interfaces of 

Structure 2 and Structure 1, respectively;  𝜎2  is the polarisation induced charge at the 

heterointerfaces, 𝑁𝐷,2  is the sheet carrier concentration of Structure 2, 𝜀𝑟  is the dielectric 

constant, and 𝑡𝑏𝑟 is the thickness of the barrier layer. This increase in effective conduction band 

offset further increases the polarisation field when compared to Structure 1. The increase of 

electron mobility from 1102 cm2 V-1s-1 in Structure 1 to 1317 cm2 V-1s-1 in Structure 2 is also 

shown in Figure 5.30(c). The improvement in both electron density and mobility is owed to the 

higher quantum well depth which in turn lowers the alloy scattering. Additionally, the effective 

Schottky barrier of the quaternary structure will increase with the presence of the AlN spacer 

barrier, which reduces the gate leakage within the device [239]. This reduces the forward 

Schottky gate current, thus enabling high gate voltage operation. The trend of current density, 

shown in Figure 5.27(c), indicates that there is essential reduction in the current density below 

the gate region. This is a result of reduced electric field within the device, shown in Figure 5.31 

(a),(b), that leads to reduction in channel leakage into the buffer. Although the electric field at 

the AlN/GaN interface is higher in Structure 2 (9.8 × 106 V cm-1) compared to Structure 1 (3.38 

× 106 V cm-1), there is a greater drop in electric field away from this interface.  

 

5.4.3.3.  InGaN Channel Layer – Structure 3 

InGaN has been widely used as the channel material due to its low band gap, which can enhance 

the high frequency characteristics, reducing 1/f noise and RF current collapse [240]–[242]. 

Therefore, in Structure 3, InGaN replaces the GaN channel layer in Structure 2. The output 

characteristics for Structure 3 is given in Figure 5.27(c), showing a 1 % increase in 𝐼𝑜𝑛 (4.035 

A mm-1) and a 2 % increase in 𝐼𝑜𝑓𝑓 (3.505 A mm-1) when compared to Structure 2 at 𝑉𝐺𝑆 = +2 

V and 𝑉𝐺𝑆 = -2 V, respectively.. A similar trend of transport characteristics can also be seen in 

Figure 5.28(a). The narrower band gap of InGaN increases the quantum well depth. This 

improves the carrier confinement within the channel. This is shown from Figure 5.29(b) where 

Δ𝐸𝑐,2 − Δ𝐸𝑐,1 = exp (
𝜎2 − 𝑁𝐷,2

𝜀𝑟
) 𝑡𝑏𝑟 (5.5) 
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the carrier density is higher compared to previous structures.  

InGaN is beneficial due to its relatively low electron effective mass, leading to increased carrier 

velocity. This is shown in Figure 5.32(a),(b) where the carrier velocity is increased by 13.9 × 

103 cm s-1 compared to the conventional AlGaN/GaN HEMT. As a result, cut-off frequency is 

increased for devices performing at high frequency.  

In comparison to previous structures, the buffer leakage can be reduced further due to the 

compressive strain in the channel produced from the InGaN/GaN interface. Also, the 

piezoelectric polarisation in InGaN is opposite to the AlGaN layer, increasing the conduction 

band below the channel. This contributes towards the reduction of short channel effects and 

buffer leakage, which improves the 2DEG mobility and, hence, device performance. 

 

Figure 5.31: (a) Depth profile of electric field for conventional AlGaN/GaN HEMT and Structures 

1-3. (b) Closer visual focusing on the field at the interfaces from the depth of 50 nm and 90 nm. 

 

Figure 5.32: (a) Depth profile of electron velocity for conventional AlGaN/GaN HEMT and 

Structures 1-3. (b) Closer visual focusing on the field at the interfaces from the depth of 50 nm and 

90 nm. 
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5.4.4. Impact of Architectural Geometry on Device Performance 

The improved AlGaN/GaN HEMT structure including all enhanced architectural modifications 

(Structure 3) is studied further by investigating the effects of changing the dimensions of the 

modifications on device performance. The thicknesses of the step-graded barrier layers (𝑡𝑏𝑟), 

spacer layer (𝑡𝑠𝑝), and buffer layer (𝑡𝑏𝑓) are modified from 6 nm to 9 nm, 2 nm to 5 nm, and 

2.0 nm to 3.0 nm, respectively. 

The transfer and output characteristics with respect to the thickness of each modification are 

given for IDS – VGS and IDS – VDS in Figure 5.33(a)-(c) and Figure 5.34(a)-(c), respectively; 

where each figure shows the transfer and output characteristics for (a) 𝑡𝑏𝑟, (b) 𝑡𝑠𝑝, and (c) 𝑡𝑏𝑓. 

It is shown that an increase in 𝑡𝑏𝑟 , 𝑡𝑠𝑝 and 𝑡𝑏𝑓 improves the ON-state performance. However, 

the threshold voltage (𝑉𝑇𝐻 ) also increases, which poses as an issue for high frequency 

applications. With increased 𝑉𝑇𝐻, the switching speed of the device is significantly reduced and 

greater parasitic capacitance would be induced upon switching from OFF-state to ON-state, 

and vice visa. On the other hand, DC output characteristics are enhanced significantly with 

 

Figure 5.33: Transfer characteristics at 𝑉𝐷𝑆 = 36 V for various (a) barrier thickness, 𝑡𝑏𝑟; (b) 

spacer thickness, 𝑡𝑠𝑝; and (c) buffer thickness, 𝑡𝑏𝑓 of the final structure (Structure 3). Inset: 

extracted 𝑉𝑇𝐻 and its trend compared with results of [243] and [244] with respect to 𝑡𝑏𝑟, 𝑡𝑠𝑝, and 

tbf, respectively. 
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increased 𝑡𝑏𝑟 , 𝑡𝑠𝑝 , and 𝑡𝑏𝑓 , boasting 47 %, 77 %, and 32 % increases in current density, 

respectively. 

Investigating further into the device performance characteristics, the distribution of electron 

density and mobility are simulated for each modification thickness that is shown in Figure 5.35 

and Figure 5.36, respectively. In general, an increase of modification thickness increases the 

electron density but reduces the electron mobility. The increase in electron density when (i) 𝑡𝑏𝑟, 

(ii) 𝑡𝑠𝑝 , and (iii) 𝑡𝑏𝑓  is increased is due to (i) the increased surface trap screening and 

piezoelectric effect, (ii) increased conduction band offset, and (iii) increased carrier 

confinement and reduced buffer leakage. Reduction in electron mobility with reduced 

modification thickness stems from lower electric field distribution and surface roughness. 

 

 

 

Figure 5.34: Output characteristics at 𝑉𝐺𝑆 = 2 V for various (a) 𝑡𝑏𝑟; (b) 𝑡𝑠𝑝; and (c) 𝑡𝑏𝑓 of the final 

structure (Structure 3). 
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5.5. Summary 

In this chapter, we have optimised the fabrication process of the S/D Ohmic contact and gate 

Schottky contact as well as proposing an upgraded device architecture that enhances device 

performance. 

For S/D contact, an optimised fabrication process of Ohmic contacts is proposed to reduce the 

access resistance and enhance DC/RF performance of AlGaN/GaN HEMTs. We have 

experimentally shown that the contact resistance, 𝑅𝐶 , of AlGaN/GaN HEMTs with AlN 

exclusion layer (GaN/Al0.28Ga0.72N/AlN) can be significantly reduced from around 1.7 Ω.mm 

(no etching) to 0.3 Ω.mm (75 % etching). This has been achieved by (i) etching ¾ of the barrier 

using Ar+ ion beam dry etching, (ii) using an optimised Ti/Al/Ni/Au (12 nm/200 nm/40 nm/100 

 

Figure 5.35: Current density distributions at 𝑉𝐷𝑆 = 36 V for varying 𝑡𝑏𝑟, 𝑡𝑠𝑝, and 𝑡𝑏𝑓 in Structure 3. 

 

Figure 5.36: Electron mobility distributions at 𝑉𝐷𝑆 = 36 V for varying 𝑡𝑏𝑟, 𝑡𝑠𝑝, and 𝑡𝑏𝑓; Structure 3. 
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nm) multilayer metallisation scheme and (iii) rapid annealing temperature of 850 °C. Despite 

the possible partial damage of 2DEG due to Ar+ bombardment during the etching process, the 

very small distance between the alloy and the 2DEG has led to an overall reduction of 𝑅𝐶. The 

TLM model extraction combined with 2D drift-diffusion simulations have shown that small 

𝑅𝐶 leads to a small transfer length, 𝐿𝑇. This could be an issue in terms of thermal management. 

With the small 𝐿𝑇, a high current density at the inner edges of the contact could results in a 

large increase in self-heating at this location. 

For the gate contact, TiN Schottky processing has been implemented to achieve high Schottky 

barrier, low leakage current and improved linearity. This process is validated for both optical 

and electron lithography. A large Schottky barrier of 1.06 eV and low gate leakage of 60 nA 

mm-1 have been obtained after annealing the gate metal at 500 oC in an N2 atmosphere. This 

optimal Schottky contact is obtained for TiN thicknesses of < 10 nm due to the higher 

preservation of the strain with reduced TiN thickness. The C – V and I – V characterisations 

revealed very low trapping density within the optimised device. It has been found that 

annealing at an optimal temperature (500 oC for large gate length and 600 oC for sub-

micrometer gate length) alters the state of the AlGaN barrier layer. In addition, the conduction 

band modulation at the TiN/AlGaN interface is also the result of the strain change that creates 

quasi-p-type doping beneath the Schottky metal. 

Finally, the output and transfer characteristics of an optimised design of a GaN-based HEMT 

has been analysed. The electrical characteristics such as carrier densities, mobility and 

velocities are extracted. Process and geo-optimisations are applied to the conventional 

AlGaN/GaN HEMT design, and the final proposed design is studied for the geometrical 

variation impact. The final proposed structure consists of: (i) step-graded barrier layer of three 

equal thicknesses; (ii) implementing AlN as the interfacial spacer layer; and (iii) a thin InGaN 

channel layer. This structure, AlGaN/AlN/InGaN, produces encouraging results in terms of 

mobility and 2DEG confinements. The threshold voltage obtained for the AlGaN/AlN/InGaN 

HEMT is 8.4 V. A peak current of 4.04 A mm-1 is achieved with the on-state resistance of 2.2 

Ω mm-1. The impacts of geometrical variation show that the drive current is improved by 

increasing the thickness of the barrier and spacer lay, despite having a trade-off to higher buffer 

leakage. On the contrary, reducing the thickness can lead to mobility enhancement, hence 

improving both DC and RF performance.



 

CHAPTER 6 CONCLUSION & FUTURE WORKS 

 

 

152 

 

6. Conclusion 

 

CHAPTER 6 

CONCLUSION & FUTURE WORKS 

 

6.1. CONCLUSION ........................................................................................................... 152 

6.2. FUTURE WORKS ....................................................................................................... 156 

6.2.1. Decoupling of Bulk Trapping and Self-Heating ............................................. 157 

6.2.2. Thermal Management of Strain-Induced Self-Heating ................................ 157 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 6 CONCLUSION & FUTURE WORKS 

 

 

153 

 

6.1. Conclusion 

The aim of this Thesis was to investigate the degradation mechanisms that limit the 

performance and reliability of AlGaN/GaN-based devices, namely self-heating, on-resistance, 

current collapse, S/D access resistance, and gate leakage. Through the successful decoupling 

of self-heating and charge trapping effects, under normal device operation, we acquired vital 

information on the effect that each degradation mechanism has on AlGaN/GaN-based device 

performance and reliability. The developed knowledge will contribute towards device failure 

prevention/prediction and facilitate the device performance/reliability progress, an important 

step for large-scale deployment can be attained. Our gained expertise was used to assist with 

propositions of Ohmic and Schottky contacts optimisation and improved AlGaN/GaN-based 

device architectures. The aforementioned degradation mechanisms were significantly reduced 

to improve the performance and reliability of AlGaN/GaN-based devices. 

Chapter 1 introduced a historical development of GaN technology since its discovery. The 

primary reasons for why GaN is becoming more used in industry, what applications make use 

of GaN and how this has effected its market value were summarised. Then, the figure of merits 

(i.e. JFOM, BHFFOM, and KFOM) of GaN-based devices were compared against other 

competing semiconductor materials. The current GaN technology issues were outlined, which 

led towards the rationale of this Thesis. Next, the aim and objectives were then defined and the 

organisation of the Thesis was presented. Finally, the original contribution of this work towards 

GaN-based research was recapitulated. 

An intensive literature review investigating the physical properties of III-N materials (i.e. 

crystal structure, material properties and spontaneous/piezoelectric polarisation) was 

undertaken in Chapter 2. It has been shown that, unlike electron drift-velocity and mobility, 

very low gain in kinetic energy occurs when a GaN-based device operates at low electric field 

(< 180 kV cm-1). This is a result of the low effect that elastic scattering mechanisms have on 

the charge carrier energy. After, the AlGaN/GaN-based device structure, in terms of its 2DEG 

formation, substrate choice, state-of-the-art and development challenges have been reviewed. 

An optimal Al concentration in the AlGaN barrier layer was found between 30 and 40 % for 

typical barrier thickness. It was described that increasing the Al concentration beyond this point 

causes strain relaxation in the AlGaN barrier and access resistance to increase. Furthermore, 

the dominant mehcanisms of carrier transport are identified as field emission for Ohmic 
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contacts and thermionic and thermionic-field emission for Schottky contacts. Finally, self-

heating within AlGaN/GaN-based devices is shown to be an extremely fast process, whereby 

70 % of its peak operating temperature takes place within the first few microseconds (<2 µm). 

With this, sufficient knowledge in AlGaN/GaN-based devices has been gained to continue with 

an investigation into the currently used non-invasive characterisation techniques of degradation 

mechanisms within such devices. Some of these non-invasive techniques, such as IR, XRD and 

electrical, have been used for validation throughout this Thesis. Some other invasive 

techniques, e.g. TEM, SEM and XPS, have been used for post-fabrication verification. The last 

section outlines the AlGaN/GaN-based device development challenges that are preventing 

widespread commercial and industrial development. These challenges include (i) self-heating 

effects, (ii) charge trapping effects, (iii) S/D Ohmic contact resistances, and (iv) Schottky 

contact gate leakage and barrier height.  

In Chapter 3, Infrascope temperature mapping system measurements showed a large increase 

in temperature at the S/D contacts of AlGaN/GaN-based devices at operating conditions. 

Temperature coupling of a high conductivity tensile region to the lower conductivity regions 

was found to be responsible for the temperature rise observed at the inner-edges of the S/D 

contacts. The thermal coupling also enhanced the peak of temperature at the end of the gate in 

the AlGaN/GaN HEMTs. In addition, the HR-XRD measurement, supported by DD 

simulations, revealed that the change of the strain at the vicinity of source and drain Ohmic 

contacts, due to a difference in expansion coefficients of III-N and source and drain 

metallisation, was the reason behind this temperature rise. We also studied AlGaN/GaN-based 

structures with a GaN cap layer grown on a p-type doped HP-Si (111) substrate. Their I – V 

characteristics from experimental measurements were simulated via a DD transport model 

using Fermi-Dirac statistics and the SRH recombination model by commercial tool Silvaco 

Atlas. A thermal model was employed to study the self-heating effects with the thermal 

conductivity approximated by a power function and calibrated to experimental data. We found 

that the current became limited by an increase in the lattice temperature with the increase in 

applied bias up to 13% (the 4 µm structure) and that this limitation occurred sooner in shorter 

structures. We demonstrated a good agreement of the electro-thermal simulations that predicted 

a lattice temperature of 374 K against experimental temperature of 399 K at applied bias of 20 

V in the largest, 18 µm structure as well as in the smallest, 4 µm structure, a lattice temperature 

of 434 K against experimental temperature of 453 K at applied bias of 13 V. In addition, we 
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observed that by applying electrical stress (voltage) on the Ohmic contacts, the total 

polarisation value in heterostructure reduced when compared to the largest contact distance of 

18 µm for 12 µm, 8 µm, and 4 µm by 7 %, 10 %, and 17%, respectively. This decrease in the 

total polarisation was found to be due to the inverse piezoelectric effect caused by the additional 

stress induced by the applied electric field on contact. The inverse piezoelectric effect changed 

the total polarization thus affecting a 2DEG density in the channel. 

In Chapter 4, several current degradation misconceptions have led us towards developing a 

new parametric technique for decoupling self-heating and charge trapping, under normal 

device operation. In addition, preliminary investigations show that (i) two transient phases of 

self-heating occur within the device and (ii) the trapped charges have a large impact on the 

device electrostatic integrity. Using this parametric technique, charge trapping behaviours, with 

the exclusion of self-heating, were analysed through the use of source and drain transient 

currents. Two types of degradation mechanisms were identified: (i) fast degradation – less than 

1 ms, followed by (ii) slow degradation – greater than 1 ms. Both bulk traps and surface traps 

contribute towards fast degradation. Through monitoring source and drain transient currents, 

we observe a difference between 𝐼𝑆 and 𝐼𝐷, which is defined as bulk trapping. However, only 

surface traps contribute towards slow degradation, where 𝐼𝑆 –  𝐼𝐷 = 0 mA. Through monitoring 

the diffierence between 𝐼𝑆 and 𝐼𝐷, bulk trapping time constant was shown to be independent of 

𝑉𝐷𝑆 and 𝑉𝐺𝑆. Although, 𝑉𝐷𝑆 was found to affect the bulk trap density. Large 𝑉𝐷𝑆 was found to 

be a cause of bulk charge trapping during both ON and OFF states of the device. Surface 

trapping is found to have a much greater impact on slow degradation when compared to self-

heating and bulk trapping. This is an important step to understanding the priority of device 

engineering, whereby the focus should be aimed towards reducing surface trapping 

accumulation and redistribution in order to minimise current degradation. 

In Chapter 5, we had experimentally shown that the contact resistance, 𝑅𝐶, of AlGaN/GaN 

HEMTs with AlN exclusion layer (GaN/Al0.28Ga0.72N/AlN) could be significantly reduced 

from 1.7 Ω.mm (no etching) to 0.3 Ω.mm. This was achieved by (i) etching ¾ of the barrier 

using Ar+ ion beam dry etching, (ii) using an optimised Ti/Al/Ni/Au (12 nm/200 nm/40 nm/100 

nm) multilayer metallisation scheme and (iii) rapid annealing temperature of 850 °C. Despite 

the possible partial damage of 2DEG due to Ar+ bombardment during the etching process, the 

very small distance between the alloy and the 2DEG led to an overall reduction of 𝑅𝐶. The 
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TLM model extraction combined with 2D drift-diffusion simulations showed that a small 𝑅𝐶 

led to a small transfer length, 𝐿𝑇. This was shown to be a potential issue in terms of thermal 

management. With the small 𝐿𝑇, a high current density at the inner edges of the contact could 

result in a large increase in self-heating at this location. The Schottky contact of an AlGaN/GaN 

HEMT was then optimised. TiN Schottky processing has been implemented to achieve high 

Schottky barrier, low leakage current and improved linearity. A large Schottky barrier of 1.06 

eV and low gate leakage of 60 nA mm-1 have been obtained after annealing the gate metal at 

500 oC in an N2 atmosphere. This optimal Schottky contact is obtained for TiN thicknesses of 

< 10 nm due to the higher preservation of the strain with reduced TiN thickness. The C – V and 

I – V characterisations revealed very low trapping density within the optimised device. It has 

been found that annealing at an optimal temperature (500 oC for large gate length and 600 oC 

for sub-micrometer gate length) alters the state of the AlGaN barrier layer. In addition, the 

conduction band modulation at the TiN/AlGaN interface is also the result of the strain change 

that creates quasi-p-type doping beneath the Schottky metal. Finally, several modifications to 

a conventional HEMT was made in order to improve its output and transport characteristics, 

namely 2DEG density and carrier mobility. We began by comparing the characteristics of a 

conventional AlGaN/GaN HEMT with a HEMT that has an AlGaN step-graded barrier layer, 

AlN spacer layer, and InGaN channel layer. A large improvement in output and transfer 

characteristics were observed. Upon changing the geometric design of some of the 

modifications, we observed an increase in current density when the barrier, spacer and buffer 

thickness was increased. However, reducing the thicknesses led to enhancement of carrier 

mobility. Therefore, with the optimisations for Ohmic and Schottky contacts as well as device 

structure, the overall performance of AlGaN/GaN-based devices were significantly improved. 

Overall, our aim of understanding and reducing the degradation mechanisms causing the 

performance and reliability degradation of AlGaN/GaN-based devices has been achieved. 

 

6.2. Future Works 

We have investigated the reliability and performance degradation mechanisms of AlGaN/GaN-

based devices. However, there is further research that can be performed to contribute towards 

better understanding of the kinetics of these degradation mechanisms. An accurate knowledge 

of the charge trapping characteristics as a function of operating temperature is important 

because (i) the thermal condition of a device is closely related to its mean time-to-failure and 
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(ii) help to identify the quantitative impact of the advanced device architecture on self-heating 

and/or charge trapping. 

6.2.1. Decoupling of Bulk Trapping and Self-Heating 

Although bulk trapping has been identified to be the different between source current and drain 

current (Section 4.5.2), it is unclear as to whether it is dominant over self-heating. In order to 

investigate this, a temperature sensor can be implemented at the surface of the device, near the 

drain side gate edge, to measure the self-heating characteristic. This self-heating characteristic, 

which is independent of applied power and bias conditions, can then be compared to the source 

and drain transient currents, under different precharging conditions, to identify the bulk 

trapping kinetic. To note, Infrared cannot be used due to its inaccuracy and time resolution and 

µRaman cannot be used as it requires high power to operate effectively.  

In Section 4.5.2.3, we have experimentaly shown that bulk trapping is gate voltage independent. 

This suggests that bulk traps are caused by hot carrier injections, since the bulk traps are known 

to be temperature independent [193]. This conclusion need to be verified through Monte Carlo 

simulations, taking into account the optical phonon scattering. 

From Section 4.5.3, it is clear that surface traps degrade the current within our devices due to 

changes in electrostatic for time constants larger than 1 ms. However, the physics behind the 

quasi-saturation of the drain current, before 1 ms, is unclear and needs further investigation. 

We think that the impact of non-distributed surface traps on the electrostatic, and thus the 

current, is minimal compared to redistributed traps. This investigation can be carried out 

through drift-diffusion simulations.  

6.2.2. Thermal Management of Strain-Induced Self-Heating 

In Section 3.2.2, we have shown that strain reduction is the cause of temperature rise that occurs 

at the inner-ends of the source and drain contacts of MBE grown devices. However, this thermal 

management issue needs to be verified for MOCVD grown devices, since it is the primary 

growth technique chosen for commercial devices. 

Furthermore, two options can be proposed in order to enhance the S/D thermal management. 

Firstly, develop a new Ohmic contact metalisation scheme via the optimisation of the metal 

source target-to-substrate distance. Unlike the process of the gate contact, described in Section 

3.2.2.3, the compressive strain of S/D metal contact needs to be minimised to lower strain 
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compensation at metal/AlGaN interface, and therefore, reduce self-heating. Secondly, simulate 

the overgrowth layer that is described in Section 5.2.2. to observe the impact that reduced 

vertical electric field has on transfer length and, therefore, self-heating. This simulaton can be 

used to optimise the overgrowth layer thickness and angle.  
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A.1. Probing Station and Measurement Framework 

The following describes the electrical characterisation facilities, Summit 12000-AP probing 

station used to probe our 2 inch AlGaN/GaN wafer and our Keithley 4200A-SCS parametric 

analyser which sources voltage and measures the current of the chosen device. An illustration 

of the described setup is given in Figure A.1. 

 

A.1.1. Summit 12000-AP Probing Station 

The Summit 12000-AP probing station, shown in Figure A.2, is used perform our low noise 

measurements. This particular probing station allows access to the full range of testing 

instruments for up to 200 mm wafers with the use of its 200 mm gold-plated aluminium chuck. 

A variety of configurations are easily accessible in order to optimise analysis of the DUT such 

as (i) wide range of microscope zoom and focus options, (ii) a thermal range of -60 oC to 300 

oC, and (iii) chuck size, depth and orientation. Wafer navigation, mapping, automation and 

integration with measurement software is available on-screen through the VeloxTM probe 

station control software. In addition, Cascade DCM-210 3-axis micro-positioners with high 

positioning accuracy (< 2 µm) and large position range (12.7 mm x, y and z axes range) were 

magnetically stationed onto the Summit 12000-AP probing station. The magnetic pull from the 

micro-positioners to the probing station prevented mechanical ambient effects from interfering 

with the measured signal. Finally, a low resistance Cascade 154-001 radial probing needle was 

connected to the micro-positioner which probed the DUT. The low resistance minimises the 

 

Figure A.1: Setup for electrical characterisation of AlGaN/GaN HEMT. The DUT is placed on the 

baseplate of the probing station and probed. The probe station is then connected to the parametric 

analyser which allows for measurement of DUT electrical characteristics. 
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parasitic capacitance that occurs when bias is increased within a short edge time. 

 

A.1.2. Keithley 4200A-SCS Parametric Analyser 

The parametric analyser used for this Thesis is the Keithley 4200A-SCS. The framework 

includes the Clarius application program in order to allow measurement of semiconductor 

devices and materials. Several common characterisation techniques can be performed using 

Clarius such as I – V, C – V, pulsed I – V, and transient I – t characterisation.  

The parametric analyser allows source and measurement functions through its eight model 

4200 source-measure units (4200-SMUs), typically used for DC measurements. This 

fundamental instrument module can source and measure either voltage or current in a sweep, 

step, or constant bias configuration. A sense-LO, sense, force and preamp control (PA CNTRL) 

terminal is available for each 4200-SMU. For the purposes of our experiments, only the force 

terminal is used to source and measure voltage and current. The 4200-SMUs available for our 

parametric analyser are specifically the 4200-SMU model. The module is essentially a 

voltage/current source in series with a current meter that is connected in parallel with a voltage 

meter. A detailed block diagram of this module is given in Figure A.3. Here, The voltage, 

current and power compliance of 210 V, 105 mA and 2.2 W, respectively, is set by voltage limit 

(V-limit) and current limit (I-limit) circuits. 

 

Figure A.2: Summit 12000-AP probing station using the VeloxTM control software, Cascade DCM-

210 micro-positioners and Cascade 154-001 radial probing needles. 
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The Keithley 4200A-SCS also has four model 4225 pulse measure units (4225-PMUs) that are 

used over SMUs for measuring I – V characteristics with minimal self-heating and transient 

current. These modules provide a broad range of voltage sourcing with voltage and current 

measurements at very short time intervals. The module is capable of providing multi-level 

waveforms segments of 20 ns to 40 s with pulse periods of 120 ns to 1 s. Amplitudes of ±40 V 

with millivolt resolution and measurements at up to 800 mA with < 12 nA resolution can also 

be achieved from these multi-level waveforms. Three types of ultra-fast I – V tests can be 

performed as illustrated in Figure A.4: 

i. Pulsed I – V – High speed, time-based measurements that provide DC-like results are 

achieved from a pulsed source. Current and/or voltage measurements are taken as an 

average of readings within a defined pulse measurement window (i.e. between 120 ns 

to 1 s). Customisation of duty cycle, rise/fall times, and amplitude can be used with this 

 

Figure A.3: Basic block diagram of SMU source-measure configuration. 
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setting. 

ii. Transient I – V – Pulsed waveforms are captured in a time-based manner for current 

and/or voltage measurements. Typically, this is a single pulsed waveform that is used 

to analyse the time-varying electrical characteristics of a device, i.e. transient current 

degradation. A large number of samples can be captured within a short measurement 

window using this setting, making it useful for precise time-based measurements. 

iii. Pulsed Sourcing – Involves outputting multi-level pulses using the built-in Segment 

ARB function. This function allows for the creation of any type of waveform within the 

given compliances and timing limitations of the 4225-PMU. Measurements of AC or 

DC voltage and current can be performed using this setting, removing the need for 

additional measurement hardware or complicated programming to capture these 

measurements. 

This complex measurement hardware is built with respect to the block diagram of the 4225-

PMU module shown in Figure A.5. The remote pulse measure unit (RPM) is connected 

between the 4225-PMU and Summit 12000 AP probe station. This module allows inputs of 

both 4200-SMU and 4225-PMU simultaneously and is used for convenience of switching 

between DC and pulsed measurements.  

 

 

Figure A.4: Settings achievable by the 4225-PMU module and their benefits for (i) Pulsed I – V, (ii) 

Transient I – V, and (iii) Pulsed Sourcing. 
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A.2. Instrument Calibration 

Since this is the first time that we are measuring both source and drain transient currents 

simultaneously, it is very important to identify the difference between 𝐼𝑆 and 𝐼𝐷 (offset) of these 

currents. As a result of hardware interfacing, our characterisation facilities, Keithley 4200-SCS 

framework and Summit 12000-AP probe station, given in Section A.1, needs to be calibrated. 

In order to do this, a 180 Ω ± 5 % resistor is connected via 4225-PMU of the framework 

whereby a high voltage pulse waveform of 13 V is applied for 2 s. 𝐼𝑆 and 𝐼𝐷 are then measured. 

An 𝐼𝑆 , 𝐼𝐷  offset (∆𝐼 ) of 0.4 mA is clearly visible in Figure A.6 and persists throughout the 

entirety of the measurement. Therefore, during data processing of any further measurements in 

this chapter, 𝐼𝑆 is required to be set 0.4 mA lower to correlate with 𝐼𝐷. 

 

 

Figure A.5: Block diagram of the 4225-PMU control system showing the connections between the 

Keithley 4200A-SCS and 4225-RPM. 

 

Figure A.6: Transient 𝐼𝑆 and 𝐼𝐷 of a 180 Ω resistor at 13 V, showing the 𝐼𝑆, 𝐼𝐷 offset, ∆𝐼, is 

persistently 0.4 mA. 
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