
Schirmer, A and McGlone, FP

 A touching Sight: EEG/ERP correlates for the vicarious processing of 
affectionate touch.

http://researchonline.ljmu.ac.uk/id/eprint/10007/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Schirmer, A and McGlone, FP (2018) A touching Sight: EEG/ERP correlates 
for the vicarious processing of affectionate touch. Cortex, 111. pp. 1-15. 
ISSN 1973-8102 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


A Touching Sight:  

EEG/ERP Correlates for the Vicarious Processing of Affectionate Touch 

Annett Schirmer
1,2,3

Francis McGlone
4,5

1
Department of Psychology, The Chinese University of Hong Kong, HK 

2
Brain and Mind Institute, The Chinese University of Hong Kong, HK 

3
Center for Cognition and Brain Studies, The Chinese University of Hong Kong, HK 

4
School of Natural Sciences & Psychology, Liverpool John Moores University, UK 

5
Institute of Psychology, Health & Society, University of Liverpool, UK 

Address for correspondence: 

Annett Schirmer 

Department of Psychology 

The Chinese University of Hong Kong 

3rd Floor, Sino Building 

Shatin, N.T. 

Hong Kong 

Email: schirmer@cuhk.edu.hk 

*Title page

mailto:schirmer@nus.edu.sg


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1 

A Touching Sight: 

EEG/ERP Correlates for the Vicarious Processing of Affectionate Touch 

Annett Schirmer
1,2,3

Francis McGlone
4,5

1
Department of Psychology, The Chinese University of Hong Kong, HK 

2
Brain and Mind Institute, The Chinese University of Hong Kong, HK 

3
Center for Cognition and Brain Studies, The Chinese University of Hong Kong, HK 

4
School of Natural Sciences & Psychology, Liverpool John Moores University, UK 

5
Institute of Psychology, Health & Society, University of Liverpool, UK 

Address for correspondence: 

Annett Schirmer 

Department of Psychology 

The Chinese University of Hong Kong 

3rd Floor, Sino Building 

Shatin, N.T. 

Hong Kong 

Email: schirmer@cuhk.edu.hk 

*Manuscript - with changes highlighted

mailto:schirmer@nus.edu.sg


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2 

Abstract 

Observers can simulate aspects of other people's tactile experiences. We asked whether they do so 

when faced with full-body social interactions, whether emerging representations go beyond basic 

sensorimotor mirroring, and whether they depend on processing goals and inclinations. In an 

EEG/ERP study, we presented line-drawn, dyadic interactions with and without affectionate touch. 

In an explicit and an implicit task, participants categorized images into touch vs no-touch and same 

vs opposite sex interactions, respectively. Modulations of central Rolandic rhythms implied that 

affectionate touch displays engaged sensorimotor mechanisms. Additionally, the late positive 

potential (LPP) being larger for images with as compared to without touch pointed to an 

involvement of higher order socio-affective mechanisms. Task and sex modulated touch perception. 

Sensorimotor responding, indexed by Rolandic rhythms, was fairly independent of the task but 

appeared less effortful in women than in men. Touch induced socio-affective responding, indexed 

by the LPP, declined from explicit to implicit processing in women and disappeared in men. In sum, 

this study provides first evidence that vicarious touch from full-body social interactions entails 

shared sensorimotor as well as socio-affective experiences. Yet, mental representations of touch at a 

socio-affective level are more likely when touch is goal relevant and observers are female. Together, 

these results outline the conditions under which touch in visual media may be usefully employed to 

socially engage observers. 

Key words: mirror neurons, vicarious tactile processing, emotion, somatosensory perception, social 

touch, sex differences 
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Introduction 

Casual affectionate touch, such as a tap on the shoulder, creates a pleasurable sensation that is mood 

enhancing and that biases social interactions towards positive outcomes (for a review see Schirmer, 

Wijaya, & Liu, 2016). Interestingly, those who merely observe touch may also be affected. 

Research points to brain mechanisms that “mirror” other people's sensorimotor processes and that 

simulate associated physical experiences (e.g., Morrison, Lloyd, Pellegrino, & Roberts, 2004; 

Singer et al., 2004). Importantly, such mirroring has also been demonstrated for affectionate touch 

(Ebisch et al., 2008; e.g., Morrison, Björnsdotter, & Olausson, 2011; Schaefer, Heinze, & Rotte, 

2012) suggesting that observers may share in the associated sensory pleasure. However, under 

which conditions vicarious tactile experiences emerge and whether they go beyond basic 

sensorimotor representations is currently unknown. Using the electroencephalogram (EEG), the 

current study tackled these issues. 

The short touches individuals exchange in every-day social interactions shape feelings and 

behavior. In the context of field studies a so-called “Midas effect” has been identified (Crusco & 

Wetzel, 1984) whereby individuals report more positive affect and evaluate their interaction 

partners more favourably when they had been affectionately touched as compared to when they had 

not been touched (Fisher, Rytting, & Heslin, 1976). Moreover, the recipients of affectionate touch 

act more kindly in that they are more likely to be honest (Kleinke, 1977), to comply with a request 

(Guéguen & Fischer-Lokou, 2002), or to leave large tips (Crusco & Wetzel, 1984; for reviews see 

Gallace & Spence, 2010; Schirmer et al., 2016; Pawling, Trotter, McGlone, & Walker, 2017). 

To understand why a simple somatosensory event can have such wide-reaching 

consequences it is useful to consider the somatosensory system and its projections to the brain. Like 

other mechanical stimulation of the skin, affectionate touch activates a variety of somatosensory 

receptors (for a review see McGlone, Wessberg, & Olausson, 2014). Different receptor types are 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 

differently tuned to physical attributes like temperature, velocity, or pressure. Thus, their collective 

input to the brain informs about stimulus properties. As an example take Aβ fibres, which are a 

receptor class that is present across the body’s surface and that responds to light pressure changes. 

Microneurography recordings have shown that different Aβ fibres (e.g., Meissner’s corpuscles, 

Raffini endings) are characterized by different receptive field sizes and response functions (e.g., 

slow vs fast adapting) but that as a class their activity increases linearly with the speed of pressure 

changes across the skin (Hagbarth & Vallbo, 1967; A. B. Vallbo & Johansson, 1984). Moreover, the 

upstream projection of Aβ input passes through relay stations in spinal cord and subcortical regions 

before reaching primary somatosensory cortex behind the central fissure (Abraira & Ginty, 2013; 

Mountcastle, 1957; Wilson & Kitchener, 1996). 

Recent work has demonstrated that affectionate touch, apart from activating Aβ fibres, 

stimulates a special class of C fibres that seems specifically tuned to gentle physical contact 

between conspecifics. These fibres are referred to as C-tactile (CT) afferents and innervate the hairy 

skin of the body – that is all sites excepting a few glabrous regions such as the palms and soles. 

Their firing rates show tuning to the types of soft stroking that is typical of caress. Specifically, they 

are highest for velocities of 1 to 10 cm/s and drop off at slower and faster velocities. In line with a 

specific role for socio-affective communication, CT activity correlates linearly with psychophysical 

ratings of tactile pleasure (Löken, Wessberg, Morrison, McGlone, & Olausson, 2009; Olausson et 

al., 2002; Sehlstedt et al., 2016; A. B. Vallbo, Olausson, & Wessberg, 1999; for a review McGlone 

et al., 2014). CT input to the brain bypasses the cortical areas targeted by the Aβ pathway and 

instead projects to socio-affective circuits where it is integrated with other aspects of human mental 

functioning (for a review Schirmer & Adolphs, 2017). For example, CT stimulation has been shown 

to target insula (McGlone et al., 2012; Olausson et al., 2002; Voos, Pelphrey, & Kaiser, 2013; for a 

meta-analysis on pleasant touch more generally Morrison, 2016) and orbitofrontal cortex (Case et 

al., 2016; McGlone et al., 2012; Voos et al., 2013), which are relevant for emotion, as well as the 
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superior temporal cortex (Ackerley et al., 2012; Bennett, Bolling, Anderson, Pelphrey, & Kaiser, 

2014; Kaiser et al., 2015), which serves as a major hub in the processing of social stimuli like faces 

and voices (Schirmer, 2018). 

Inspired by the discovery of “mirror neurons” (Pellegrino, Fadiga, Fogassi, Gallese, & 

Rizzolatti, 1992; Rizzolatti & Fabbridestro, 2008), researchers asked whether individuals perceive 

touch vicariously, simply by observing another person's tactile experiences (for a review see 

Keysers, Kaas, & Gazzola, 2010). Initial support for this came from studies using functional 

magnetic resonance imaging (fMRI). Original work found that seeing someone else in pain 

activates the anterior cingulate (Morrison et al., 2004; Singer et al., 2004) – a major site for pain 

perception. Subsequently, studies focused on benign touch and found that viewing gentle pressure 

to the hand (Schaefer et al., 2012) or stroking of the arm (McCabe, Rolls, Bilderbeck, & McGlone, 

2008) among other forms of stimulation (Ebisch et al., 2008; Keysers et al., 2004; Lamm, Silani, & 

Singer, 2015; Masson, Van De Plas, Daniels, & Op de Beeck, 2018; McCabe et al., 2008; Peled-

Avron, Levy-Gigi, Richter-Levin, Korem, & Shamay-Tsoory, 2016; Schaefer et al., 2012) activates 

primary somatosensory cortex. Moreover, viewing stroking at a speed optimized for CT signalling 

recruits the posterior insula, which supports the somatosensory representation of such signals 

(Morrison et al., 2011). 

Evidence for vicarious touch experiences raises a number of interesting questions. One such 

question is whether these experiences are limited to the somatosensory system or entail higher-order 

socio-affective responding. To date, only a few studies have approached this questions and their 

results are inconclusive. One example is work by Lamm and colleagues (2015) comparing the 

feeling and seeing of non-social pleasant and unpleasant touch. Overlap for pleasant touch in the 

orbito-frontal cortex and overlap for unpleasant touch in the anterior insula revealed that both felt 

and observed sensations recruit affective processing. However, whether such recruitment shows for 

social touch remains unclear. Another example is a study by Masson and colleagues (2018) 
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reporting that compared to object-based touch, interpersonal touch elicits increased activity in a 

range of regions including those associated with pain (e.g., insula) and theory of mind (e.g., 

temporo-parietal junction). However, because they compared the physical contact between two 

people with that between two objects, Masson and colleagues isolated the presence of humans 

rather than the presence of touch. 

Another question resulting from previous work concerns the potential role of observer 

intention in modulating sensitivity to vicarious touch. For practical purposes, one may differentiate 

unintentional or implicit from intentional or explicit stimulus processing. Both types of processing 

have specific temporal trajectories and functional consequences. On the one hand, implicit 

processing is often faster and may powerfully interfere with explicit processing (Frith & Frith, 

2008; Escoffier, Herrmann, & Schirmer, 2015). For example, an implicitly processed vocal tone 

will slow-down verbal emotion judgements if the vocal tone is emotionally incongruous as 

compared to congruous (e.g., a negative as compared to a positive voice saying “success”) (Min & 

Schirmer, 2011). On the other hand, explicit processing may be necessary for information 

representation in certain processing contexts and for certain types of information. For example, 

verbal emotions (excepting strong expressions like taboo words) may be readily represented when 

task-relevant but have little impact on listeners when task-irrelevant (Schirmer & Kotz, 2003). In 

the past, research on vicarious touch relied on images that zoomed in on touch and asked 

participants to view these images passively or to rate touch pleasantness. As such touch was always 

a fairly obvious, explicit manipulation that was in the focus of the participant’s attention. Hence, 

whether vicarious experiences persist when touch is an unattended detail in a complex visual scene 

is still unknown. 

Another outstanding question is whether and how individuals differ in the susceptibility to 

vicarious touch experiences. In this regard, past research suggests that the observer's sex is 

potentially relevant. Much evidence has accumulated that women are more responsive than men to 
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the socio-affective signals of other people (Bostanov & Kotchoubey, 2004; Löckenhoff et al., 2014; 

van den Brink et al., 2010). During explicit tasks, women are often more accurate than men in 

naming or categorizing emotional expressions (Hall, 1978; Hoffmann, Kessler, Eppel, Rukavina, & 

Traue, 2010; Sen, Isaacowitz, & Schirmer, 2017). However, this female advantage is relatively 

small and typically confined to subtle or otherwise difficult stimuli. During implicit tasks, sex 

differences are more robust. A greater female sensitivity to emotional expressions has been 

established with a range of paradigms (Alice M Proverbio, Adorni, Zani, & Trestianu, 2009; Alice 

M Proverbio, Zani, & Adorni, 2008; Alice M Proverbio & Galli, 2016) including behavioral 

interference tasks (Schirmer, Chen, Ching, Tan, & Hong, 2013; Schirmer, Seow, & Penney, 2013; 

Schirmer, Zysset, Kotz, & Yves von Cramon, 2004) as well as passive change detection assessed 

with online measures of brain activity (Fan, Hsu, & Cheng, 2013; Schirmer, Striano, & Friederici, 

2005). Additionally and of particular relevance here, eye tracking of passive gazing at social 

interactions indicates that women are more likely than men to fixate on instances of touch 

suggesting that such touch is more readily noticed and perhaps more salient to them (Schirmer, Ng, 

& Ebstein, 2018). 

Past efforts at examining vicarious affectionate touch are dominated by fMRI. Although 

fMRI offers good spatial resolution, its poor temporal resolution precludes insights into the time-

course of somatosensory and socio-affective processes. Thus, insights from fMRI are usefully 

complemented by the EEG. Specifically, analysis of the EEG time-frequency domain can shed light 

on emerging somoatosensory processes. Of particular interest here are Rolandic rhythms, which are 

characterized by a mid-central scalp-topography with peaks in the alpha (8–15 Hz) and beta (16–30 

Hz) bands. These rhythms are both up- (Brinkman, Stolk, Dijkerman, de Lange, & Toni, 2014; 

Nierhaus et al., 2015) and down-regulated (Ritter, Moosmann, & Villringer, 2009; Singh et al., 

2014; Whitmarsh, Nieuwenhuis, Barendregt, & Jensen, 2011; Yang, Decety, Lee, Chen, & Cheng, 

2009) by actual, imagined, and observed tactile as well as motor activity. As such they serve as a 
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window onto the sensorimotor experience of vicarious touch. Further insights are offered by the 

event-related potential (ERP). Visual as well as auditory emotional stimuli enhance a late positive 

potential (LPP) when compared with neutral stimuli (Hajcak, Dunning, & Foti, 2009; Olofsson, 

Nordin, Sequeira, & Polich, 2008; Schupp et al., 2000). Additionally, there is evidence that 

affectionate touch elicits an LPP (Ackerley, Eriksson, & Wessberg, 2013) and that, relative to no-

touch, it increases the LPP difference between emotional and neutral stimuli (Schirmer & Gunter, 

2017b; Schirmer et al., 2011). Moreover, close-ups of human bodily contact evoke a greater LPP 

than close-ups of the same body-parts without contact (Peled‐ Avron & Shamay‐ Tsoory, 2017). 

Thus, the LPP promises insights into the socio-affective processing of observed touch. 

In sum, there is evidence that observers mirror the sensorimotor aspects of affectionate 

touch. However, whether mirroring emerges from full-body social interactions, whether it entails 

socio-affective responding, and how it depends on the participant's task or sex are still open 

questions. We tackled these questions in an EEG study using a previously validated set of line-

drawings showing social interactions with and without affectionate touch (Schirmer et al., 2015). 

The drawings were presented in two separate tasks. In an explicit task, participants indicated 

whether or not the two persons in each drawing touched, while in an implicit task they indicated 

whether the two persons were of the same (i.e., two women or two men) or opposite sex (i.e., 

woman and man). Previous research informed the following key predictions. First, we anticipated 

that touch displays would modulate both sensorimotor and socio-affective processes. Building on 

existing EEG evidence, the former were assessed via Rolandic rhythms over a mid-central region, 

whereas the latter were assessed via the LPP over a centro-parietal region. Second, we speculated 

that touch effects would be modulated by attention. Given the evidence reviewed above and the fact 

that touch in the images was fairly subtle, we expected touch effects to be smaller during implicit 

processing, when attention is directed away from touch, as compared with explicit processing, when 

touch is task-relevant. Of interest was whether the implicit task simply reduces or completely 
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abolishes vicarious touch experiences. Finally, we predicted sex differences in the sensitivity to 

vicarious touch. Specifically, we hypothesized that, compared with men, women would show 

stronger correlates of sensorimotor and socio-affective touch mirroring when touch was task-

irrelevant and that a similar sex difference may be absent or small when touch was task-relevant. 

Methods 

Participants 

Forty-nine participants were invited to this study. One participant was excluded because his 

performance in the behavioural tasks fell below 3 standard deviations of the group mean. Twenty-

four of the remaining participants were female with a mean age of 21.5 years (SD 1.23). The 

remaining participants were male with a mean age of 23.12 years (SD 1.95). All had normal or 

corrected to normal vision. Two women and three men were ambidextrous, one man was left 

handed and the remaining participants were right handed as determined with the Edinburgh 

handedness scale. 

This study was approved by the Institutional Review Board of the National University of 

Singapore. Participants gave informed consent before starting the experiment. 

Stimuli 

As stimulus material we used the Social-Touch Picture Set (Schirmer et al., 2015), which comprises 

240 unique line drawings of dyadic interactions. Half the drawings entail touch between interaction 

partners, that can be deemed appropriate for platonic friends and acquaintances  (i.e., 10 different 

types of touch including shoulder hug, one hand on shoulder while target is standing, one hand on 
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shoulder while target is sitting, two hands on shoulder while target is sitting, handshake, hug, one 

hand on upper arm while target is standing, upper arm touches upper arm while sitting, one hand on 

forearm while target is sitting, touching knees while sitting) and excluded romantic and sexually 

intimate forms of contact (e.g., kissing). The remaining drawings are no-touch controls. 

Specifically, each no-touch control matches one touch drawing in that it presents the same 

individuals with identical or very similar postures. However, the touch is replaced by a gesture or 

the positioning of a hand on a nearby object. Half of the touch drawings and their no-touch controls 

illustrate interactions between same-sex individuals (50% women, 50% men), whereas the 

remaining drawings illustrate opposite-sex interactions (25% woman touching man, 25% man 

touching woman, 50% woman and man touching each other). In the present study, the line drawings 

were presented in white on grey background (Figure 1). 

Procedure 

Participants were tested individually. After giving informed consent, they were prepared for the 

EEG recording. To this end, a 64-channel cap was placed on their scalp and individual electrodes 

were attached above and below the left eye, on the left and right outer canthi, and on the nose tip. 

After the EEG set-up, participants were seated in front of a computer monitor at a distance of 0.8 m.

The experiment comprised two tasks presented in two separate blocks. Task instructions 

were shown on-screen immediately at the beginning of each block. One task examined explicit 

touch processing and required participants to indicate whether they saw individuals touching. The 

other task examined implicit touch processing and required participant to indicate whether image 

characters had the same or opposite sex. A trial started with a 300 ms fixation cross that was 

followed by a 1 s presentation of a line drawing. Participants responded not during the image 

presentation but afterwards following a response prompt that served to avoid motor artifacts 
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confounding EEG/ERP periods of interest (Luck, 2005). During the explicit task, images were 

replaced by the words “Touch” and “No Touch” shown on the left and right (or right and left) of the 

screen centre and prompting participants to push the left or right (or right or left) button indicating 

whether there was touch or no-touch, respectively. During the implicit task, the words “Same Sex” 

and “Opposite Sex” served as response prompts. After participants submitted their response by 

pressing one of two buttons on a response box, the screen turned completely grey for an inter-trial 

interval (ITI) of 0.5, 1, or 1.5 seconds. Each ITI occurred for one third of the trials in random order. 

Images were shown once in each block and twice across blocks. Thus, each block comprised 

240 trials of which half were touch and the other half were no-touch trials. Images in each block 

were presented in pseudo-random order with the constraint that the two images from a given 

touch/no-touch pair occurred in separate block halves. After participants completed the first block, 

they could rest until they felt comfortable to commence the second block. Block order (i.e., the 

order of tasks) and button assignment to left and right hands were counterbalanced within the 

female and the male group. 

Electrophysiological Recording and Analysis 

The EEG was recorded at 256 Hz with a Biosemi ActiveTwo system, which uses a common mode 

sense active electrode for initial referencing. Only an antialiasing filter was applied during data 

acquisition (i.e., sinc filter with a half-power cutoff at 1/5 the sampling rate). Recordings were done 

using a 64-channel cap with electrodes placed according to the 10-20 system. A set of four external 

electrodes attached above and below the left eye and at the outer canti of each eye was used to 

monitor eye movements. 

The EEG was analyzed using MATLAB and EEGLAB (Delorme & Makeig, 2004). First, 

the recordings were re-referenced to the average of all electrodes and subjected to low- and high-
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pass filtering with a half-power cut-off at 30 and 0.1 Hz, respectively. The transition band was 7.5 

Hz for the low pass filter (-6 dB/octave; 221 pts) and 0.1 Hz for the high pass filter (-6 dB/octave; 

16501 pts). The continuous data were epoched using a 1000 ms pre-stimulus window and a 1000 

ms post-stimulus window. The resulting epochs were visually scanned for non-typical artefacts 

caused by drifts or muscle movements. Epochs containing such artefacts were removed. After the 

application of a 1 Hz high-pass filter, the data were subjected to an independent component analysis 

(Onton, Westerfield, Townsend, & Makeig, 2006) and the component structure resulting from this 

analysis was applied to the original epoched data-set with the 0.1 to 30 Hz filter setting (Winkler, 

Debener, Müller, & Tangermann, 2015). Components reflecting typical artefacts (i.e., horizontal and 

vertical eye movements and eye blinks) were removed and the data back-projected from component 

space into EEG channel space and re-epoched. The resulting epochs were again scanned visually 

for residual artefacts and affected epochs as well as epochs followed by inaccurate behavioral 

responses dropped from further analysis. A minimum of 60 trials and an average of 106 (SD 10) 

trials per condition entered statistical analysis of both the ERPs and the time-frequency domain. 

Thus inaccurate responses and artefacts accounted for an average of 12% lost trials. 

For the ERP analysis, epochs were baseline-corrected using a 200 ms pre-stimulus window 

and a 1000 ms post-stimulus window and averaged for each condition and participant. The LPP  

was quantified as the mean voltage in a window ranging from 400 to 1000 ms following stimulus 

onset as measured over C1, C2, Cz, Cp1, Cp2, Cpz, P1, P2, and Pz. This window and electrode 

group was selected based on previous work showing that the LPP emerges after 400 ms with 

maximum amplitudes over centro-parietal electrodes (Hajcak et al., 2009; Olofsson et al., 2008; 

Schupp et al., 2000). 

For the time-frequency analysis, epochs were subjected to a wavelet transform covering 

frequencies between 5 and 28 Hz in steps of 1 Hz using the default EEGLAB wavelet. Wavelet 

length was set to 600 ms enabling the exploration of data between -663 to 667 ms around stimulus 
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onset. Wavelet transforms entered a power analysis, power was averaged across trials for a given 

condition and participant, and baseline-corrected by dividing each data-point by the mean power 

obtained for a pre-stimulus baseline window ranging from -300 to -100 ms. For conversion to dB, 

matrices were transformed by taking the common logarithm (base 10) times 10. 

 For statistical analysis, power was first averaged across C3, C1, Cz, C2, and C4 in line with 

previous work (e.g., Forschack, Nierhaus, Müller, & Villringer, 2017; Nierhaus et al., 2015; Peled-

Avron et al., 2016). Then, we examined condition contrasts of interest using an approach well 

established in the context of fMRI research. Specifically, for a given contrast, the data of its two 

conditions or difference scores (for more detail please see further below) were subjected to t-tests at 

each point in the time-frequency space and p-values were converted into Z-scores. The resulting 

time-frequency Z-score matrix was smoothed using a Gaussian filter (FWHM = 4 data points) and 

Random Field Theory (Adler & Hasofer, 1976; Worsley, Evans, Marrett, & Neelin, 1992), as 

described elsewhere (https://matthew-brett.github.io/teaching/random_fields.html), was applied to 

identify a Z-threshold that corrected for multiple comparisons. To further reduce the chance of 

spurious results, clusters with a size smaller than 1% of the time-frequency space were discarded. 

The electrophysiological data were subjected to a series of hypothesis-driven contrasts. 

Specifically, four main contrasts were performed looking at general effects averaged across men 

and women and these contrasts were then further explored as a function of sex. They included 1) the 

task main effect (explicit vs implicit), 2) the touch main effect in the explicit task (touch vs no-

touch), 3) the touch main effect in the implicit task (touch vs no-touch), and 4) the task by touch 

interaction explored using condition difference scores (explicit task [touch minus no-touch] vs 

implicit task [touch minus no-touch]). When exploring effects in men and women separately, we 

focused on regions in the time-frequency space for which the interaction between sex and either 

task or touch (e.g., women [touch minus no-touch] vs men [touch minus no-touch]) was significant 

thus limiting the chance of false-positive results. 
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Results 

 

Time-Frequency Data. As expected, inspection of the time-frequency plots revealed a power 

decrease in both the high alpha and the low beta band that varied as a function of task, touch, and 

sex (Figure 2; for plots illustrating effects from other scalp regions please refer to the 

Supplementary Materials). The statistical results for analyses done across male and female 

participants are presented in Table 1. Exploration of the overall task effect revealed that explicit 

touch processing suppressed power more than implicit touch processing in two time frequency 

clusters. An early cluster in the alpha band extended from 2 to 80 ms (C1.1 in Table 1 and Figure 

2A) and a later cluster (C1.2 in Table 1 and Figure 2A) in the beta band extended from 139 to 667 

ms. Additionally, between 401 and 515 ms, explicit relative to implicit touch processing increased 

power in the theta band typically quantified between 4 to 7 Hz (C1.3 in Table 1 and Figure 2A).  

 Power differences between touch and no-touch images were explored for each task 

separately. In the explicit task, touch images were associated with greater power than no-touch 

images in four clusters that spanned from 166 to 656 ms involving alpha and beta band (C2.1 – 

C2.4 in Table 1 and Figure 2A). Although similar effects were observed in the implicit task (C3.1 – 

C3.3 in Table 1 and Figure 2A), a task comparison showed that here the touch minus no-touch 

difference was smaller between 436 and 507 ms in the upper beta (C4.1 in Table 1 and Figure 2A) 

and larger between 534 and 667 ms in the upper alpha and lower beta band (C4.2 in Table 1 and 

Figure 2A). 

 Statistical comparisons between male and female participants are presented in Table 2. Sex 

differences in the task effect were pursued by comparing explicit minus implicit task difference 

scores between groups. This revealed that the power decrease for explicit vs implicit touch 
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processing was smaller early in the alpha band (C5.1 in Table 2 and Figure 2B) and larger later in 

the beta band (C5.2 in Table 2 and Figure 2B) for men as compared with women. In other words, 

men’s task difference score was less negative/more positive for the early alpha but more 

negative/less positive for the late beta effect when compared with women’s task difference score. 

  Sex differences in the touch effect were pursued by contrasting female and male touch 

minus no-touch difference scores separately for the explicit and the implicit task. For the explicit 

task, this produced four significant clusters. The first cluster was located in the lower beta band 

(C6.1 in Table 2 and Figure 2B) and here the power increase for touch as compared with no-touch 

images was smaller in women than in men. In fact, women showed a significant drop in power for 

touch as compared with no-touch images as evident from a follow-up analysis (20-23 Hz, 25-88 ms, 

cluster size = 1%, mean Z = 4.277). The second, smaller cluster was also in the lower beta band 

(C6.2 in Table 2 and Figure 2B) and here the power increase for touch as compared with no-touch 

images was greater in women than in men. In fact, a follow-up test for each group indicated that this 

power increase was significant in women only (15-17 Hz, 174-401 ms, cluster size = 3%, mean Z = 

5.068, p < .0001). The last two clusters spanned the upper beta band (C6.3 – C6.4 in Table 2 and 

Figure 2B) and, again, the touch minus no-touch difference was smaller in women than in men. 

 Analysis of the touch effect in the implicit task produced again four clusters. Here, all 

clusters indexed a greater power increase for touch relative to no-touch images in women as 

compared with men (C7.1 – C7.4 in Table 2 and Figure 2B). The clusters spanned across the beta 

band and epoch duration. Moreover, follow-up analysis by sex revealed one very extensive cluster 

in women (14-28 Hz, 18-667 ms, cluster size = 31%, mean Z = 7.348, p < .0001) but only four 

small clusters in men ([1] 24-26 Hz, 10-53 ms, cluster size = 1%, mean Z = 4.614, p < .0001; [2] 

19-25 Hz, 131-252 ms, cluster size = 4%, mean Z = 5.677, p < .0001; [3] 20-21 Hz, 562-640 ms, 

cluster size = 1%, mean Z = 4.369, p < .0001; [4] 7-13 Hz, 577-667 ms, cluster size = 3%, mean Z 

= 5.417, p < .0001). 
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Late Positive Potential. The LPP is illustrated in Figure 3. Its mean amplitude was explored using 

the same series of hypothesis-driven contrasts as employed for the time-frequency analysis. We 

opted for this approach for two reasons. First, we wished to ensure that analysis steps and statistical 

models compared for the two electrophysiological measures. Specifically, analysing the LPP with a 

traditional omnibus ANOVA with Task, Touch, and Sex as factors would have addressed main 

effects as well as two and three-way interactions. However, that was not feasible for the time-

frequency data as we could compare only two conditions or difference scores at a time. Second, the 

traditional omnibus ANOVA has been criticized for its increased probability of false-positive results 

due to multiple testing and planned t-tests have been suggested as a better alternative (Cramer et al., 

2016). In our case, an omnibus ANOVA would have involved seven tests with only three being 

immediately relevant (Task, Task*Touch, Task*Touch*Sex). 

 As before, we first explored effects that showed irrespective of observer sex. Unlike for the 

time-frequency results, the effect of task was non-significant (p=.242). However, touch modulated 

the LPP amplitude during both explicit (t(47)=6.87, p < .0001) and implicit touch processing 

(t(47)=2.03, p = .04). In either case, the LPP was larger for touch as compared with no-touch 

images and this difference was more pronounced when touch was processed explicitly as compared 

with implicitly (t(47)=4.26, p < .0001).  

 Exploring the LPP by sex revealed a non-significant effect of task in both men and women 

(ps > .195). Moreover, in the explicit task, both men (t(23)=4.38, p = .0002) and women 

(t(23)=5.27, p < .0001) showed a larger LPP for touch as compared with no-touch images and this 

touch effect did not differ between groups (p = .489). However, in the implicit task, the LPP touch 

effect was significant in women (t(23)=2.93, p = .007) but not in men (p = .962). Accordingly, a t-

test on the touch minus no-touch difference indicated that this difference was significantly larger in 

women than in men (t(45.74)=2.178, p = .035). 
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Behavior. In the present experimental tasks responses were prompted after the target as to avoid 

motor confounds in the EEG/ERP (Luck, 2005). Therefore, the value of the behavioral data in 

shedding light on vicarious touch perception is compromised. Nevertheless, accuracy was examined 

as to ascertain that individuals followed task instructions and to explore potential effects of task and 

touch. 

 The mean probability of accurate responding was high (0.938) and ranged from 0.845 to 

0.987 across participants (Figure 4). A t-test comparing touch with dyad recognition indicated that 

the former was performed more accurately than the latter (t(47)=2.601, p=.0124). Looking at each 

task separately revealed that accuracy was lower for touch vs no-touch images in the explicit 

(t(47)=-11.28, p<.0001) as well as in the implicit task (t(47)=-6.38, p<.0001). However, touch vs 

no-touch differences were greater for the former as compared with the latter condition (t(47)=8.771, 

p<.0001). 

 Again, women and men were explored separately. The task effect was marginally significant 

in both groups (women, t(23)=1.88, p=.073; men, t(23)=1.74, p=.096) and the group difference was 

non-significant (p=.791). Likewise, both groups showed poorer performance for touch as compared 

with no-touch images in the explicit task (women, t(23)=-3.8, p<.001; men, t(23)=-3.81, p<.001) 

and the associated picture difference score was comparable between groups (p=.338). However, in 

the implicit task, the touch effect was significant in women (t(23)=-3.73, p=.001) and non-

significant in men (p=.191) and this group difference approached significance (t(45.61)=-1.85, 

p=.07). 

 In addition to these planned analyses, we conducted an exploratory analysis in an effort to 

better characterize the touch effect in the explicit task. Specifically, we asked whether any of the 

touch images was more difficult to identify than the others. To this end, we averaged the 

participants’ accuracy data for each image as a function of Touch Type (i.e., the 10 touch types 
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mentioned above including hug, handshake etc.), Touch Version (there were three different versions 

taken from different angles with different people), and Dyad Sex (female/female, male/male, 

female/male, male/female). The mean accuracy computed across trials in the explicit/touch 

condition was 91.9% and the standard deviation was 13.6%. None of the images had an accuracy 

lower than three standard deviations away from the mean. However, accuracy varied substantially 

across images and visual inspection of this variation suggested that touch was more readily noticed 

when it involved the hands (e.g., handshake, hug) rather than other body-parts (e.g., two knees, two 

upper arms).  

 

Discussion 

 

The present EEG/ERP data offer first evidence that the observation of touch in full-body social 

interactions has both sensorimotor and socio-affective effects and that these effects differ between 

an explicit and an implicit task and between the sexes. The following sections will describe this data 

in more detail with specific emphasis on the three questions formulated in the introduction. 

 

Does affectionate touch in social scenes provoke sensorimotor and socio-affective mirroring? 

 

Although the present study does not allow clear dissociation of perceptual from higher-order mental 

processing, a case can be made that central Rolandic rhythms are more closely tied to sensorimotor 

representations (Ritter et al., 2009), whereas the LPP and theta activity (Güntekin & Başar, 2014) 

are more closely tied to socio-affective representations evoked by interactional stimuli (Hajcak et 

al., 2009; Olofsson et al., 2008; Schupp et al., 2000).  

 Sensorimotor mirroring. With this dissociation in mind, the present time-frequency results 

agree with previous studies that implicate Rolandic rhythms in the vicarious perception of 
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discriminative (Forschack et al., 2017) and affectionate touch (Peled-Avron et al., 2016). In line 

with the notion that Rolandic rhythms are “idle” in that they desynchronize as a result of personal 

and vicarious sensorimotor processes (Ritter et al., 2009), alpha and beta power were reduced 

during explicit as compared with implicit touch processing. Whereas the alpha effect started early, 

at the beginning of the stimulus epoch, the beta effect began later at about 140 ms after stimulus 

onset. Thus, looking for touch in social interactions potentially activated sensorimotor areas and 

desynchronized their resting rhythms. Moreover, desychronization of the alpha and to a lesser 

degree of the beta band may have been relevant in preparing the participants' processing focus and 

in facilitating the detection of affectionate touch.  

 Notably, however, the actual representation of affectionate touch was not accompanied by a 

further reduction in Rolandic rhythms. To the contrary, touch compared with no-touch images were 

associated with higher alpha and beta-power. This finding is at odds with the notion that Rolandic 

rhythms are strictly “idle”. It also contradicts previous studies on vicarious pain (Whitmarsh et al., 

2011; Yang et al., 2009) and vicarious affectionate touch (Peled-Avron et al., 2016). Specifically, a 

study on vicarious affectionate touch found a suppression of alpha power between 8 and 10 Hz 

when comparing the observation of touch between people with the observation of non-social touch 

between objects or social interactions without touch (Peled-Avron et al., 2016).  

 One explanation for these discrepant results concerns the nature of the touch displays. 

Earlier work reporting a suppression of Rolandic rhythms by painful and benign discriminative as 

well as affectionate displays used displays that strictly focused on touch and that removed touch 

from its wider context (Peled-Avron et al., 2016; Whitmarsh et al., 2011; Yang et al., 2009). By 

contrast, the line drawings used here presented full-body interactions in which touch was just one 

detail that, as evident from the behavioral data, was not always recognized.  

 Research suggests that the ease with which a stimulus can be perceived or processed 

differentially modulates associated time-frequency effects. For example, increased rather than 
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decreased Rolandic rhythms emerged for motor imagery as the complexity of the imagined 

movement increased (Brinkman et al., 2014). Furthermore, unlike consciously perceived touch, 

touch presented below the threshold for awareness enhanced Rolandic rhythms (Nierhaus et al., 

2015). Thus, a greater processing difficulty and/or a reduced touch awareness resulting from the 

present image set may explain why activity was greater for touch than no-touch images in the 

Rolandic frequency bands (Brinkman et al., 2014; Forschack et al., 2017; Nierhaus et al., 2015).  

 Socio-affective mirroring. Apart from elucidating sensorimotor processing, the present EEG 

results demonstrate socio-affective processing of affectionate touch displays. Specifically, a time-

frequency effect emerged for the theta band, which has been repeatedly linked to emotion (Güntekin 

& Başar, 2014; Paré & Collins, 2000). Among other approaches, theta oscillations have been 

recorded from the rodent amygdala during fear (Paré & Collins, 2000) and from the human scalp in 

response to a range of affective stimuli such as faces, pictures, and music (Güntekin & Başar, 2014; 

Sammler, Grigutsch, Fritz, & Koelsch, 2007; Symons, El-Deredy, Schwartze, & Kotz, 2016). 

Moreover, both positive and negative stimuli were shown to produce greater theta power when 

compared with neutral ones (for a review see Güntekin & Başar, 2014). The current findings extend 

this work by showing that, compared with focusing on person identity, evaluating touch in social 

scenes increases theta power. Moreover, they suggest that observers share in some aspects of the 

socio-affective experience elicited by affectionate touch. 

 The present ERP results corroborate this possibility. As predicted, they entailed a 

modulation of the LPP, which, like theta power, is typically larger for emotional as compared with 

neutral events. Original work has implicated the LPP in affective picture processing (Olofsson et al., 

2008). Subsequently, LPP modulations have been identified for voices (Pell et al., 2015; Schirmer 

& Gunter, 2017a), faces (Hartigan & Richards, 2017) and, most importantly, for touch. Specifically, 

gentle pressure to the forearm, which may also activate CT afferents (A. B. Vallbo et al., 1999), 

enhances the LPP difference between emotional and neutral pictures (Schirmer et al., 2011). 
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Additionally, brush stroking with CT velocity elicits an LPP with a very long latency as would be 

expected by the slow transmission of CT input (Ackerley et al., 2013). Last, observing touching 

body parts boosts the LPP relative to a no-touch control (Peled‐ Avron & Shamay‐ Tsoory, 

2017).The present results extend these findings to the vicarious perception of affectionate touch in 

social scenes. 

 Although LPP amplitude reliably reflects affective value, it is also modulated by several 

other factors including stimulus frequency (Squires, Donchin, Herning, & McCarthy, 1977), 

difficulty (Goldstein, Spencer, & Donchin, 2002), and task-relevance (Squires et al., 1977). 

Therefore, it is thought to denote a more general increase in motivated attention (Schupp et al., 

2000) that arises from bottom-up as well as top-down processes associated with affective stimulus 

(e.g., intrinsic pleasure) and task-characteristics (e.g., incentive; Hajcak et al., 2009), respectively. 

Adopting this general framework in the context of the present findings, we conclude that 

affectionate touch displays are processed at a socio-affective level thereby attracting attentional 

resources. 

 

Do explicit and implicit vicarious touch processing differ? 

 

Apart from exploring the neural signatures of vicarious affectionate touch, this study addressed the 

role of processing intention by comparing vicarious touch effects elicited during an explicit and an 

implicit task.  

 Interestingly, processing intention played a fairly minor role in the sensorimotor responses 

reflected by Rolandic rhythms. Here, a task effect emerged for only two small clusters, one in the 

upper beta band between 440 and 510 ms (cluster size = 1%) and one in the upper alpha and lower 

beta band starting at 530 ms and lasting until the end of the analysis epoch (cluster size = 3%). 

Whereas the earlier cluster reflected a larger touch effect during explicit as compared with implicit 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

22 

processing, the opposite was true for the latter cluster. Possibly, these task differences were due to 

small functional differences in the way vicarious touch modulates sensorimotor activity when touch 

is processed automatically as compared to when it is processed intentionally.  

 Importantly, socio-affective responses measured with the LPP were characterized by a 

robust interaction between touch and task. As predicted, the touch effect during explicit processing 

was significantly larger than the touch effect during implicit processing indicating that different 

processing intentions translate into different post-perceptual responses to affectionate touch 

displays. When touch is task-relevant, its affective value more readily enhances motivated attention 

than when touch is task-irrelevant (Hajcak et al., 2009; Schupp et al., 2000). Possibly, a tactile 

processing intention facilitates the translation of early sensorimotor and basic affective responses 

into a higher-order emotional meaning that is held in awareness (Barrett, 2017). Moreover, such 

facilitation may be especially pronounced in full-body social scenes where touch is but one of many 

interactional signals. Nevertheless, when processing intention directs attention away from touch, its 

affective value may still be accessed (Frith & Frith, 2008). Additionally, it may potentially interfere 

with and bias task performance as demonstrated by the present touch effect on the behavioral 

accuracy of dyad sex categorization.  

 Taken together, it seems that both sensorimotor and socio-affective representations of third-

party tactile interactions persist during implicit processing conditions. However, whereas a lack of 

intention has minimal effects on the former, it substantially subdues the latter. We, therefore, 

speculate that sensorimotor mirroring occurs more automatically than socio-affective mirroring 

possibly because socio-affective mirroring is more complex and more strongly engages top-down 

processes that integrate a tactile incidence with contextual information (e.g., who is touching, where 

are they touching). Nevertheless, the fact that socio-affective mirroring persists suggests that 

observers can share in the high-order consequences of affectionate touch even when their attention 

is engaged elsewhere. 
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Are there sex differences in the processing of affectionate touch displays? 

 

As expected, this study revealed sex differences both in the Rolandic rhythms indicative of 

sensorimotor processing and in the LPP indicative of socio-affective processing.  

 Looking at Rolandic rhythms, the task main effect captured in the overall difference 

between explicit and implicit processing irrespective of image type was larger in women than in 

men. Specifically, the early suppression of alpha power at image onset was more pronounced (sex 

effect cluster size = 8%) indicating that women more readily prepared for the sensorimotor demands 

associated with recognizing touch. Moreover, a smaller later effect in the beta band (sex effect 

cluster size = 2%) suggested that men emphasized task-directed processing with delay.  

 Additionally, the sexes diverged in the Rolandic touch effects. Again, these effects are 

interpreted based on the idea that Rolandic rhythms are not strictly “idle” but show more 

differentiated activity for mental representations of bodily states when these states are difficult to 

represent (Brinkman et al., 2014) and when they are processed without awareness (Forschack et al., 

2017; Nierhaus et al., 2015). Accordingly, explicit task results indicate that the sexes differ both 

quantitatively and qualitatively in their early response to vicarious touch. Three clusters in which 

the touch effect was smaller or more negative in women than in men (summed sex effect cluster 

size = 12%) suggest that explicit touch perception was less effortful for the former relative to the 

latter group. This agrees with the fact that women more readily prepared for explicit touch 

perception as indexed by the down-regulation of alpha rhythms as a function of task. Additionally, it 

agrees with earlier reports that, compared with men, women show stronger Rolandic suppression to 

vicarious pain (Yang et al., 2009) and more readily gaze at touch in social interactions (Schirmer et 

al., 2018). A smaller cluster in the lower beta band (cluster size = 2%) points to qualitative 

differences in that effortful processing focused on a lower frequency range in women than men. In 
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the implicit task, the touch minus no-touch difference was more positive in women than in men 

(summed sex effect cluster size 18%) and this sex effect spanned the entire beta band and epoch 

duration pointing to a consistent modulation of sensorimotor representations. Moreover, it suggests 

that women are more sensitive than men to affectionate touch displays in situations where 

processing intentions are directed away from nonverbal behavior.  

 LPP and behavioral data support this possibility. While touch enhanced LPP amplitude 

irrespective of sex during explicit processing, a similar effect showed in women but not men during 

implicit processing. Additionally, women but not men showed a behavioral performance decrement 

during touch as compared with no-touch trials when touch was task irrelevant. Although a statistical 

comparison of this group effect was only marginally significant, the general pattern agrees with that 

observed for the LPP. Moreover, together both measures indicate that women were more likely than 

men to implicitly distinguish between touch and no-touch images and to emphasise higher-order 

representations of touch. 

 The present study explored sex differences in the touch effect separately for explicit and 

implicit processing. As such no task comparisons can be made and no conclusions drawn as to 

whether women are more likely to differ from men under implicit as compared with explicit task 

conditions. Nevertheless, the current results corroborate and extend sex differences reported in the 

literature. As was shown for other nonverbal signals (Ahrens, Awwad Shiekh Hasan, Giordano, & 

Belin, 2014; Alice M Proverbio & Galli, 2016; Alice M Proverbio et al., 2008; Schirmer & Gunter, 

2017a), women were more sensitive than men to displays of interpersonal touch. Specifically, they 

seemed to activate associated sensorimotor representations more readily both when touch was task-

relevant and when it was task-irrelevant. Additionally, when touch was task-irrelevant, they showed 

more pronounced post-perceptual responding in that the affective meaning associated with touch 

seemed to facilitate touch-motivated attention and increased the likelihood that information about 

touch biased ongoing task-directed behavior. 
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 At present, we can only speculate as to what caused this female benefit. Apparent is that 

touch is but one of several modalities showing sex effects. Moreover, the fact that these effects are 

typically most robust under passive, implicit or otherwise challenging processing conditions (e.g., 

Sen et al., 2017), suggests that they concern the automaticity of social processing and perhaps the 

supremacy of bottom-up mechanisms in the social brain. There exist different theories as to why 

women may be socially more perceptive than men. One set of theories hold that evolutionary 

pressures associated with child care and the division of labor have created sex-specific social needs 

and strategies (Alice Mado Proverbio, 2017; Taylor, 2006; Trofimova, 2015). For example, Taylor 

argues that women depend more than men on social support for stress regulation and calls this a 

tend-and-befriend response (Taylor, 2006). By contrast, she argues that men, when faced with 

stress, more readily engage in a fight-or-flight response. Possibly then, sex differences in the need 

for affiliation have shaped sex-specific mechanisms that help boost the creation and maintenance of 

female bonds. 

 

Open Questions and Directions for Future Research 

Although this study provides novel insights, it also raises questions for future research. One such 

question concerns the different types of touch and potential differences in the way they are 

processed. For example, the casual affectionate touch that was studied here may involve a range of 

body parts, may be initiated by only one or both parties of an interaction, and may occur within 

different settings as relates to biological identity markers (e.g., sex), cultural background (e.g., 

ethnicity), and the place of the interaction (e.g., public vs private). One may venture that some if not 

all of these aspects shape the extent and quality of vicarious touch experiences. More typical 

touches may be observed with greater comfort (Schirmer et al., 2015). Additionally, intentional 

touches may be perceived more readily than unintentional ones. In line with this, an exploratory 

analysis of the present behavioral results revealed much variance in touch recognition accuracy 
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from the Social Touch Picture Set and hinted at processing benefits for touch performed with the 

hand, which may be perceived as more intentional than touch involving other body parts (e.g., 

upper arm, knee). It would be interesting to pursue these variables to and examine their role for the 

sensorimotor and socio-affective mirroring observed here. 

 A second question concerns the ecological validity of the present results. For convenience 

and ease of standardization, we have used only static cartoon snapshots of social interactions. 

However, in real life, interactions have much more detail and evolve in time. Moreover, their 

temporal trajectory is relevant when it comes to first-hand tactile sensations. As mentioned in the 

introduction, mid-range velocities excite a special class of skin receptors called CT afferents that are 

thought to play a central role in coding the socio-affective value of touch (Löken et al., 2009; 

McGlone et al., 2014). It has been shown that their central projection target, the posterior insula, is 

more active in individuals observing stroking at CT optimal as compared with sub-optimal speed 

(Morrison et al., 2011). Thus, one may venture that a similar effect holds for upstream socio-

affective processes as those examined here. To address this possibility it would be useful, albeit 

challenging, to move from the presentation of static to dynamic social interactions in future studies. 

 

Conclusions 

 

Past research found that observers mirror the sensorimotor aspects of affectionate touch (e.g., 

Morrison et al., 2011; Peled-Avron et al., 2016). The present study extends this literature in several 

ways. First, it provides original evidence that mirroring occurs for affectionate touch embedded in 

full-body social scenes and entails shared sensorimotor as well as socio-affective experiences. 

Second, this study offers a first demonstration for a role of processing goals. It shows that a task-

based focus on touch has little impact on sensorimotor mechanisms but significantly facilitates 

socio-affective mechanisms. Thus, early perceptual representations seem to emerge more 
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automatically than later conceptual ones, which may be more relevant for the conscious pleasure 

derived from touch and its impact on social processing. Additionally, an individual's inclinations are 

relevant. Compared with men, women showed enhanced sensorimotor and socio-affective 

responding. Moreover, socio-affective responding in particular was more resistant to attention being 

directed away from touch in women than in men. Taken together, the current findings underscore 

the intricacy of vicarious affectionate touch and point to affectionate touch displays as a means for 

soliciting observer involvement in social interactions. 
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Figure legends: 

 

Figure 1. Sample images from the Social Touch Picture Set. 

 

Figure 2. Time-frequency results averaged across C3, C1, Cz, C2, and C4 (as done for statistical 

analysis). (A) Effects identified across participants; (B) sex differences in the time-frequency 

response. Non-significant data points are shaded by a transparent white filter and significant clusters 

exceeding our cluster size threshold are outlined in black. Please note that the non-shaded areas in 

Panel B illustrate the significant interaction of sex with task or touch – not the task/touch effects for 

each sex. Cluster numbers (C1.1 etc.) refer to those used in Tables 1 and 2. 

 

Figure 3. ERP results. Scalp-maps illustrate the topography of the mean LPP amplitude difference 

in the analysis window. No-touch traces were subtracted from touch traces. ERP traces time-locked 

to stimulus onset are presented for a representative centro-parietal electrode. Touch traces are 

shown in dashed and no-touch traces in solid lines. The mean voltages within the LPP window are 

plotted in the bar-graph. Error bars reflect the within subjects standard error. 

 

Figure 4. Behavioral results. The probability of correct responses is presented for touch and no-

touch images as a function of participant sex. Error bars reflect the within subjects standard error, 

asterisks denote significant simple effects. 
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Table 1. Time Frequency Results Averaged Across Men and Women 
 

Cluster Frequency  Time Cluster Size 

in Percent 

Peak Z-

Score 

Median Z-

Score 

Task Effect (Touch Task - Dyad Task) 

C1.1 10-15 2-80 2 7.66**** 5.19**** 

C1.2 15-28 139-667 35 19.21**** 10.47**** 

C1.3 5-6 401-515 1 5.76**** 5.16**** 

Touch Effect during the Explicit Task (Touch - No-Touch) 

C2.1 25-28 166-280 3 7.68**** 5.78**** 

C2.2 17-18 245-299 1 4.38**** 4.23**** 

C2.3 18-28 448-656 10 6.77**** 5.17**** 

C2.4 8-9 542-605 1 4.82**** 4.28**** 

Touch Effect during the Implicit Task (Touch - No-Touch) 

C3.1 19-28 123-272 7 8.02**** 5.07**** 

C3.2 18-20 299-378 1 4.53**** 4.11**** 

C3.3 7-28 429-667 17 10.39**** 6.35**** 

Task Differences in the Touch Effect  

(Explicit Task [Touch Effect] - Implicit Task [Touch Effect]) 

C4.1 25-28 436-507 1 5.27**** 4.73**** 

C4.2 13-18 534-667 3 7.42**** 5.16**** 

  * p < .05; ** p < .01; *** p < .001; **** p < .0001 

 

 

Table



Table 2. Time Frequency Results By Sex 
 

Cluster Frequency  Time Cluster Size 

in Percent 

Peak Z-

Score 

Median Z-

Score 

Sex Differences in the Task Effect  

(Women [Task Effect] - Men [Task Effect]) 

C5.1 6-11 10-299 8 6.27**** 4.75**** 

C5.2 20-23 331-429 2 6.94**** 5.17**** 

Sex Differences in the Touch Effect during the Explicit Task 

(Women [Touch Effect] - Men [Touch Effect]) 

C6.1 16-24 2-104 4 8.58**** 5.68**** 

C6.2 15-17 159-245 2 6.31**** 4.86**** 

C6.3 21-22 217-307 1 4.24**** 4.06**** 

C6.4 18-23 323-667 7 9.96**** 5.51**** 

Sex Differences in the Touch Effect during the Implicit Task  

(Women [Touch Effect] - Men [Touch Effect]) 

C7.1 25-28 2-139 3 8.43**** 5.91**** 

C7.2 14-21 264-585 11 13.15**** 7.64**** 

C7.3 24-27 315-401 2 6.03**** 4.79**** 

C7.4 24-28 562-667 2 7.52**** 5.91**** 

  * p < .05; ** p < .01; *** p < .001; **** p < .0001 
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Seeing touch in complex social interactions enhances Rolandic rhythms in the EEG. 

It also enhances the late positive potential in the ERP. 

Both effects likely reflect sensorimotor and socio-affective responses, respectively. 

Explicit relative to implicit touch processing enhances primarily the ERP effect. 

Women have larger effects than men during implicit touch processing. 
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